1 |
刘程, 刘振, 李龙飞, 等. 离子液体碱溶液脱除秸秆中木质素[J]. 化工进展, 2018, 37(5): 1789-1794.
|
|
LIU Cheng, LIU Zhen, LI Longfei, et al. Removal of lignin from corn straw by ionic liquid alkali solution[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1789-1794.
|
2 |
CHEN H, LIU J, CHANG X, et al. A review on the pretreatment of lignocellulose for high-value chemicals[J]. Fuel Process Technology, 2017, 160: 196-206.
|
3 |
ZHANG Z, SONG J, HAN B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6834-6880.
|
4 |
YANG C Y, FANG T J. Kinetics for enzymatic hydrolysis of rice hulls by the ultrasonic pretreatment with a bio-based basic ionic liquid[J]. Biochemical Engineering Journal, 2015, 100: 23-29.
|
5 |
MATEUSZ W, YEPES C M, VILLAR J C, et al. Kinetic modeling of cellobiose by a β-glucosidase from Aspergillus fumigatus[J]. Chemical Engineering Research and Design, 2018, 136: 502-512.
|
6 |
FERDJANI S, IONITA M, ROY B, et al. Correlation between thermostability and stability of glycosidases in ionic liquid[J]. Biotechnology Letters, 2011, 33(6): 1215-1219.
|
7 |
SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
|
8 |
KAMIYA N, MATSUSHITA Y, HANAKI M, et al. Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media[J]. Biotechnology Letters, 2008, 30(6): 1037-1040.
|
9 |
GOSWAMI S, GUPTA N, DATTA S. Using the β-glucosidase catalyzed reaction product glucose to improve the ionic liquid tolerance of β-glucosidases[J]. Biotechnology for Biofuels, 2016, 9(1): 1-12.
|
10 |
SHI X, ZHAO L, PEI J, et al. Highly enhancing the characteristics of immobilized thermostable β-glucosidase by Zn2+[J]. Process Biochemistry, 2018, 66: 89-96.
|
11 |
LOU H, ZENG M, HU Q, et al. Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface[J]. Bioresource Technology, 2017, 249: 1-8.
|
12 |
LI Y, SUN Z, GE X, et al. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose[J]. Biotechnology for Biofuels, 2016, 9(1): 1-9.
|
13 |
CHANG K L, CHEN X M, HAN Y J, et al. Synergistic effects of surfactant-assisted ionic liquid pretreatment rice straw[J]. Bioresource Technology, 2016, 214: 371-375.
|
14 |
HU D, XIAO L, LI L Z, et al. Effects of ionic liquid 1-ethyl-3-methylimidazolium diethyl phosphate ([Emim]DEP) on cellulase produced by Paenibacillus sp. LLZ1[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4922-4926.
|
15 |
CHANG K L, CHEN X M, WANG X Q, et al. Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw[J]. Bioresource Technology, 2016, 227: 388-392.
|
16 |
WANG W, ZHUANG X, TAN X, et al. Dual effect of nonionic surfactants on improving the enzymatic hydrolysis of lignocellulose[J]. Energy & Fuels, 2018, 32(5): 5951-5959.
|
17 |
LIN X, LOU H, QIU X, et al. Effect of sodium dodecyl sulfate and cetyltrimethylammonium bromide catanionic surfactant on the enzymatic hydrolysis of Avicel and corn stover[J]. Cellulose, 2016, 24(2): 1-8.
|
18 |
FAN L, XIE P J, WANG Y, et al. Biosurfactant-protein interaction: influences of mannosylerythritol lipids-A on β-glucosidase[J]. Journal of Agricultural and Food Chemistry, 2018, 66(1): 238-246.
|
19 |
于跃, 张剑. 纤维素酶与表面活性剂的相互作用及其在洗涤剂中的应用[J]. 化工学报, 2016, 67(7): 3023-3031.
|
|
YU Yue, ZHANG Jian. Interaction of cellulase with surfactants and their application in detergent[J]. CIESC Journal, 2016, 67(7): 3023-3031.
|
20 |
NIELSEN A D, ARLETH L, WESTH P. Analysis of protein–surfactant interactions-a titration calorimetric and fluorescence spectroscopic investigation of interactions between Humicola insolens cutinase and an anionic surfactant[J]. BBA:Proteins and Proteomics, 2005, 1752(2): 124-132.
|
21 |
JOHNSON C M. Differential scanning calorimetry as a tool for protein folding and stability[J]. Archives of Biochemistry and Biophysics, 2012, 531(1): 100-109.
|
22 |
MATEUSZ W, YEPES C M, VILLAR J C, et al. Kinetic modeling of cellobiose by a β-glucosidase from Aspergillus fumigatus[J]. Chemical Engineering Research and Design, 2018, 136: 502-512.
|
23 |
GUO B, AMANO Y, NOZAKI K. Improvements in glucose sensitivity and stability of Trichoderma reesei β-glucosidase using site-directed mutagenesis[J]. PloS One, 2016, 11(1): e0147301.
|