Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4284-4294.DOI: 10.16085/j.issn.1000-6613.2018-2485
• Resources and environmental engineering • Previous Articles Next Articles
Peng CHEN(),Lei TAO,Yibing XIE,Mengxue GUO,Yixing MA(),Xueqian WANG(),Ping NING,Langlang WANG
Received:
2018-12-27
Online:
2019-09-05
Published:
2019-09-05
Contact:
Yixing MA,Xueqian WANG
陈鹏(),陶雷,谢怡冰,郭梦雪,马懿星(),王学谦(),宁平,王郎郎
通讯作者:
马懿星,王学谦
作者简介:
陈鹏(1996—),男,硕士研究生,研究方向为低温等离子体技术与大气污染控制。E-mail:基金资助:
CLC Number:
Peng CHEN,Lei TAO,Yibing XIE,Mengxue GUO,Yixing MA,Xueqian WANG,Ping NING,Langlang WANG. Non-thermal plasma cooperating catalyst degradation of the volatile organic compounds: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4284-4294.
陈鹏,陶雷,谢怡冰,郭梦雪,马懿星,王学谦,宁平,王郎郎. 低温等离子体协同催化降解挥发性有机物的研究进展[J]. 化工进展, 2019, 38(9): 4284-4294.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2485
放置方式 | 作者 | 方法 |
---|---|---|
直接将催化剂负载在 电极上 | Karuppiah等[ | 采用烧结金属纤维(SMF)作为DBD反应器的内电极,通过浸渍法直接将过渡金属氧化物催化剂负载在SMF上来降解低浓度的苯 |
将催化剂涂覆在反应器 的内表面 | 李国平等[ | 采用电晕放电结合TiO2催化剂,将TiO2粉末混合后的浆液均匀涂覆在反应器内铝箔内表面上降解二氯甲烷 |
将催化剂放置于电极 之间的空隙内 | 吴军良[ | 将制备的Mn/Ni/Cr基催化剂通过石英棉固定于DBD等离子体反应器放电区后段降解甲苯 |
李静[ | 以Mn作为活性组分负载在Al2O3、TiO2、ZSM-5载体上,置于DBD电极空隙间,与低温等离子体协同降解甲苯 |
放置方式 | 作者 | 方法 |
---|---|---|
直接将催化剂负载在 电极上 | Karuppiah等[ | 采用烧结金属纤维(SMF)作为DBD反应器的内电极,通过浸渍法直接将过渡金属氧化物催化剂负载在SMF上来降解低浓度的苯 |
将催化剂涂覆在反应器 的内表面 | 李国平等[ | 采用电晕放电结合TiO2催化剂,将TiO2粉末混合后的浆液均匀涂覆在反应器内铝箔内表面上降解二氯甲烷 |
将催化剂放置于电极 之间的空隙内 | 吴军良[ | 将制备的Mn/Ni/Cr基催化剂通过石英棉固定于DBD等离子体反应器放电区后段降解甲苯 |
李静[ | 以Mn作为活性组分负载在Al2O3、TiO2、ZSM-5载体上,置于DBD电极空隙间,与低温等离子体协同降解甲苯 |
催化剂类型 | 主要活性组分 | 主要协同原理 | 共有特性 |
---|---|---|---|
金属催化剂 | 贵金属:Pt、Pd、Rh、Au、Ag等; 过渡金属:Cu、Co、Fe、Mn等 | 金属组分将低温等离子体产生的O3分解,产生活性氧原子、羟基等活性物质促进了VOCs降解,此外,部分多组分金属催化剂还可提高介电常数,增加气体电离和电子能量 | 3种催化剂都能吸附污染物,增强活性粒子与污染物的碰撞概率,同时延长了污染物的停留时间,提供氧活性位点 |
金属氧化物 催化剂 | FeOx、MnOx、CuO、CoOx、Al2O3等 | 催化剂中晶格氧易被低温等离子体激活,促进氧在催化剂表面的氧化反应,从而促进降解 | |
光催化剂 | TiO2 | 低温等离子体产生紫外光,光致空穴具有很强的氧化性,能在反应过程中吸附OH-和H2O发生反应生成氧化能力极强的羟基自由基,从而加速降解 |
催化剂类型 | 主要活性组分 | 主要协同原理 | 共有特性 |
---|---|---|---|
金属催化剂 | 贵金属:Pt、Pd、Rh、Au、Ag等; 过渡金属:Cu、Co、Fe、Mn等 | 金属组分将低温等离子体产生的O3分解,产生活性氧原子、羟基等活性物质促进了VOCs降解,此外,部分多组分金属催化剂还可提高介电常数,增加气体电离和电子能量 | 3种催化剂都能吸附污染物,增强活性粒子与污染物的碰撞概率,同时延长了污染物的停留时间,提供氧活性位点 |
金属氧化物 催化剂 | FeOx、MnOx、CuO、CoOx、Al2O3等 | 催化剂中晶格氧易被低温等离子体激活,促进氧在催化剂表面的氧化反应,从而促进降解 | |
光催化剂 | TiO2 | 低温等离子体产生紫外光,光致空穴具有很强的氧化性,能在反应过程中吸附OH-和H2O发生反应生成氧化能力极强的羟基自由基,从而加速降解 |
1 | 张玲. 环境空气挥发性有机物的研究意义[J]. 江西化工, 2018 (4): 183-184. |
ZHANGLing. The research significance of volatile organic compounds in environmental air[J]. Jiangxi Chemical Industry, 2018 (4): 183-184. | |
2 | 杨雁南. 挥发性有机物的危害以及控制措施[J]. 黑龙江环境通报, 2017, 41(3): 36-39. |
YANGYannan. Harm and control measures of volatile organic compouds[J]. Heilongjiang Environmental Journal, 2017, 41(3): 36-39. | |
3 | 刘浩, 张家泉, 张勇, 等. 黄石市夏季昼间大气PM10与PM2.5中有机碳、元素碳污染特征[J]. 环境科学学报, 2014, 34(1): 36-42. |
LIUHao, ZHANGJiaquan, ZHANGYong, et al. Pollution characteristics of organic carbon and elemental carbon in atmospheric particles during the summer day in Huangshi city[J]. Journal of Environmental Sciences, 2014, 34(1): 36-42. | |
4 | 王铁宇, 李奇锋, 吕永龙. 我国VOCs的排放特征及控制对策研究[J]. 环境科学, 2013, 12(12): 4756-4763. |
WANGTieyu, LIQifeng, YonglongLÜ. Characteristics and countermeasures of volatile organic compounds (VOCs) emission in China[J]. Environmental Science, 2013, 12(12): 4756-4763. | |
5 | 王文瑞. 介质阻挡放电结合催化降解气态苯的研究[D]. 大连: 大连理工大学, 2011. |
WANGWenrui. Study of the decomposition of gaseous benzene by dielectric barrier discharge combined catalysis[D]. Dalian: Dalian University of Technology, 2011. | |
6 | 竺新波. 等离子体协同催化脱除挥发性有机物(VOCs)的机理研究[D]. 杭州: 浙江大学, 2015. |
ZHUXinbo. Mechanism study on plasma-catalytic removal of volatile organic compounds (VOCs) [D]. Hangzhou: Zhejiang University, 2015. | |
7 | VEERAPANDIANS K P, LEYSC, DEGEYTERN, et al. Abatement of VOCs using packed bed non-thermal plasma reactors: a review[J]. Catalysts, 2017, 7(12): 1-33. |
8 | CHAVADEJS, KIATUBOLPAIBOONW, RANGSUNVIGITP, et al. A combined multistage corona discharge and catalytic system for gaseous benzene removal[J]. Journal of Molecular Catalysis A: Chemical, 2007, 263(1): 128-136. |
9 | TONKSL. A general theory of the plasma of an arc[J]. Plasma & Oscillations, 1961, 34(6): 176-224. |
10 | 王爱华. 等离子体协同催化技术处理挥发性有机物的研究[D]. 北京: 北京工业大学, 2015. |
WANGAihua. Removal of volatile organic compounds by plasma coupled with catalyst[D]. Beijing: Beijing University of Technology, 2015. | |
11 | 尹钊. 低温等离子体净化柴油机尾气研究综述[J]. 山东工业技术, 2017(17): 237. |
YINZhao. A review of the research on non-thermal plasma purification of diesel engine exhaust[J]. Shandong Industrial Technology, 2017(17): 237. | |
12 | 郑水生. 低温等离子体技术处理挥发性有机废气的研究进展[J]. 科技广场, 2015(6): 117-122. |
ZHENGShuisheng. Research progress in treatment of waste gas containing volatile organic compounds by cold plasma technology[J]. Science Mosaic, 2015(6): 117-122. | |
13 | 王健壮, 贾春玲, 吴爽, 等. 低温等离子体技术在恶臭治理方面的研究进展[J]. 环境科技, 2013, 26(3): 74-78. |
WANGJianzhuang, JIAChunling, WUShuang, et al. The research progress of non-thermal plasma in dealing with odor pollution[J]. Environmental Science and Technology, 2013, 26(3): 74-78. | |
14 | VANDENBROUCKEA M, MORENTR, GEYTERN D, et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-54. |
15 | 姚超坤, 何剑. 低温等离子体在大气污染控制中的应用[C]// 中国电除尘学术会议, 2017. |
YAOChaokun, HEJian. Application of non-thermal plasma in air pollution control[C]// Chinese Academic Conference on Electric Dust Removal, 2017. | |
16 | FITZSIMMONSC, ISMAILF, WHITEHEADJ C, et al. The chemistry of dichloromethane destruction in atmospheric-pressure gas streams by a dielectric packed-bed plasma reactor[J]. Journal of Physical Chemistry A, 2000, 104(25): 6032-6038. |
17 | SATOHK, MATSUZAWAT, ITOHH. Decomposition of benzene in a corona discharge at atmospheric pressure[J]. Thin Solid Films, 2008, 516(13): 4423-4429. |
18 | 张琪, 李茹, 李秋怡, 等. 介质阻挡放电等离子体降解甲苯废气[J]. 西安工程大学学报, 2018(1): 61-66. |
ZHANGQi, LIRu, LIQiuyi,et al. Degradation of toluene waste gas by dielectric barrier discharge plasma[J]. Journal of Xi’an Polytechnic University, 2018(1): 61-66. | |
19 | 熊举坤, 黄海涛. 高频感应耦合等离子体降解甲醛[J]. 化工环保, 2011, 31(2): 119-122. |
XIONGJukun, HUANGHaitao. Degradation of formaldehyde using high-frequency inductively coupled plasma[J]. Environmental Protection of Chemical Industry, 2011, 31(2): 119-122. | |
20 | 邹芳, 吴祖成, 康颖, 等. 直流电晕放电降解杂原子有机物的电化学过程[J]. 化工学报, 2010, 61(s1): 91-95. |
ZOUFang, WUZucheng, KANGYing, et al. Electrochemical process of heteroatom degradation by DC corona discharge[J]. CIESC Journal, 2010, 61(s1): 91-95. | |
21 | 金圣, 黄立维, 李国平. 在氧化和还原氛围下脉冲电晕法降解二硫化碳废气[J]. 环境科学, 2013, 34(6): 2121-2125. |
JINSheng, HUANGLiwei, LIGuoping. Decomposion of carbon disulfide by pulse corona under oxidizing and reducing atmosphere[J]. Environmental Science, 2013, 34(6): 2121-2125. | |
22 | NAKAGAWAY, FUJISAWAH, ONO R, et al. Dilute trichloroethylene decomposition by using high pressure non-thermal plasma: humidity effects[C]// Industry Applications Society Meeting. IEEE, 2010. |
23 | DURME JVAN, DEWULFJ, SYSMANSW, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J]. Chemosphere, 2007, 68(10): 1821-1829. |
24 | ASSADIA A, BOUZAZAA, CEDRICV, et al. Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination-synergetic effect and byproducts identification[J]. Chemical Engineering Journal, 2014, 254(13): 124-132. |
25 | 叶菱玲. 介质阻挡放电结合锰催化剂降解甲苯研究[D]. 杭州: 浙江大学, 2013. |
YELingling. Study of the decomposition of toluene by dielectric barrier discharge combined Mn-catalyst[D]. Hangzhou: Zhejiang University, 2013. | |
26 | 朱海瀛. 催化剂成分对低温等离子体降解吸附态甲苯的影响[D]. 西安: 西安建筑科技大学, 2015. |
ZHUHaiying. Influence of catalyst composition on decomposition of adsorbed toluene with non-thermal plasma[D]. Xi’an: Xi’an University of Architecture and Technology, 2015. | |
27 | 党小庆, 刘晓, 黄家玉, 等. 吸附联合低温等离子体法去除甲苯废气[J]. 环境工程学报, 2012, 6(9): 3223-3228. |
DANGXiaoqing, LIUXiao, HUANGJiayu, et al. Toluene removal using adsorption combined with non-thermal plasma[J]. Journal of Environmental Engineering, 2012, 6(9): 3223-3228. | |
28 | 赵军杰. 吸附-低温等离子体净化甲苯中催化剂制备与性能研究[D]. 西安: 西安建筑科技大学, 2018. |
ZHAOJunjie. Toluene removal by adsorption and non-thermal plasma:catalyst preparation and performance study[D]. Xi’an: Xi’an University of Architecture and Technology, 2018. | |
29 | 梁文俊, 马琳, 李坚. 低温等离子体-光催化联合技术处理空气污染物的研究进展[J]. 工业催化, 2011, 19(12): 1-6. |
LIANGWenjun, LinMA, LIJian. Advance on non-thermal plasma-photocatalysis technology for air polullant control[J]. Industrial Catalysis, 2011, 19(12): 1-6. | |
30 | 孙彪. 低温等离子体联合生物滴滤降解挥发性有机物研究[D]. 青岛: 青岛科技大学, 2017. |
SUNBiao. Study on degradation of volatile organic compounds by low temperature plasma and biotrickling filter[D]. Qingdao: Qingdao University of Science & Technology, 2017. | |
31 | KIMH H, TSUNODAK, KATSURAS, et al. A novel plasma reactor for NOx control using photocatalyst and hydrogen peroxide injection [J]. IEEE Transactions on Industry Applications, 1999, 35(6): 1306-1310. |
32 | KIMH H, TAKASHIMAK, KATSURAS, et al. Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts[J]. Journal of Physics D:Applied Physics, 2001, 34(10): 604-613. |
33 | ROLANDU, HOLZERF, POPPLA, et al. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds : Part 3. Electron paramagnetic resonance (EPR) studies of plasma-treated porous alumina[J]. Applied Catalysis B: Environmental, 2002, 58(3): 217-226. |
34 | KARUPPIAHJ, MANOJK R P, RAMARAJUB, et al. Catalytic non-thermal plasma reactor for the abatement of low concentrations of benzene[J]. International Journal of Environmental Science & Technology, 2014, 11(2): 311-318. |
35 | 李国平, 徐立红, 黄桂凤, 等. 脉冲电晕结合催化剂降解二氯甲烷研究[J]. 浙江工业大学学报, 2014, 42(5): 528-532. |
LIGuoping, XULihong, HUANGGuifeng, et al. Removal of dichloromethane by a wire-in-tube pulsed corona reactor combined with catalyst[J]. Journal of Zhejiang University of Technology, 2014, 42(5): 528-532. | |
36 | 吴军良. Mn/Ni/Cr基催化剂活性对低温等离子体催化氧化甲苯性能的影响[D]. 广州: 华南理工大学, 2014. |
WUJunliang. Effect of activities of managanese, nickel and chromium-based catalysts on the catalytic performance of non-thermal plasma catalysis system for toluene oxidation[D]. Guangzhou: South China University of Technology, 2014. | |
37 | 李静. 介质阻挡放电协同催化氧化降解甲苯的研究[D]. 北京: 北京化工大学, 2017. |
LIJing. Study on the removal of toluene by dielectric barrier discharge and catalyst[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
38 | HAMMERT, BROERS. Plasma enhanced selective catalytic reduction of NOx in diesel exhaust: test bench measurements[C]// SAE International Fall Fuel & Lubricants Meeting & Exposition. 1999. |
39 | FANXing, ZHUTianle, SUNYifei, et al. The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air[J]. Journal of Hazardous Materials, 2011, 196: 380-385. |
40 | HUANGHaibao, YEDaiqi, LEUNGD Y C, et al. Byproducts and pathways of toluene destruction via plasma-catalysis[J]. Journal of Molecular Catalysis A: Chemical, 2011, 336(1): 87-93. |
41 | 赵业红. 直流电晕低温等离子体协同催化降解低浓度挥发性有机废气的研究[D]. 杭州: 浙江大学, 2016. |
ZHAOYehong. Experimental study on DC corona discharge non-thermal plasma coupled with catalysis for low-concentration volatile organic compounds removal[D]. Hangzhou: Zhejiang University, 2016. | |
42 | OGATAA, SAITOK, KIMH H, et al. Performance of an ozone decomposition catalyst in hybrid plasma reactors for volatile organic compound removal[J]. Plasma Chemistry and Plasma Processing, 2010, 30(1): 33-42. |
43 | 冯发达. 反电晕等离子体发生方法及协同催化处理挥发性有机物的研究[D]. 杭州: 浙江大学, 2014. |
FENGFada. Plasma generation based on back corona discharge and its catalysis application for volatile organic compounds removal[D]. Hangzhou: Zhejiang University, 2014. | |
44 | TANGXiujuan, FENGFada, YELingling, et al. Removal of dilute VOCs in air by post-plasma catalysis over Ag-based;composite oxide catalysts[J]. Catalysis Today, 2013, 211(4): 39-43. |
45 | 鲁美娟, 汪怀建, 黄荣, 等. 催化剂对等离子体协同催化降解挥发性有机物影响的研究进展[J]. 环境污染与防治, 2018, 40(1): 88-94. |
LUMeijuan, WANGHuaijian, HUANGRong, et al. Research of effect of catalyst on the VOCs degradation using plasma-assisted catalysis technology[J]. Environmental Pollution & Control, 2018, 40(1): 88-94. | |
46 | TRINHQ H, GANDHIM S, MOK Y S. Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst[J]. Japanese Journal of Applied Physics, 2015, 54(1S): 1AG04.1-1AG04.6. |
47 | 姚水良, 毛灵爱, 张霞, 等. 等离子体复合微量贵金属催化反应器催化氧化苯的机理分析[J]. 高电压技术, 2017, 43(12): 3973-3980. |
YAOShuiliang, MAOLing’ai, ZHANGXia, et al. Mechanism analysis of benzene catalytic oxidation using plasma reactor with micro-level noble catalysts[J]. High Voltage Engineering, 2017, 43(12): 3973-3980. | |
48 | 朱周彬. 介质阻挡放电协同Mn催化剂降解二甲苯研究 [D]. 杭州: 浙江工商大学, 2017. |
ZHUZhoubin. Study on the degradation of xylene by dielectric barrier discharge assisted Mn catalyst[D]. Hangzhou: Zhejiang Gongshang University, 2017. | |
49 | TUXin, GALLONH J, WHITEHEADJ C. Transition behavior of packed-bed dielectric barrier discharge in argon[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2172-2173. |
50 | CHENH L, LEE H M, CHENS H, et al. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects[J]. Applied Catalysis B: Environmental, 2008, 85(1): 1-9. |
51 | 徐晓鑫. Co-MCM-41催化剂协同非热等离子体氧化甲苯的过程研究[D]. 广州: 华南理工大学, 2016. |
XUXiaoxin. Non-thermal plasma catalytic oxidation of toluene by cobalt incorporated MCM-41: A process study[D]. Guangzhou: South China University of Technology, 2016. | |
52 | SONGHua, HUFangyun, PENGYue, et al. Non-thermal plasma catalysis for chlorobenzene removal over CoMn/TiO2, and CeMn/TiO2: synergistic effect of chemical catalysis and dielectric constant[J]. Chemical Engineering Journal, 2018: 347:447-454. |
53 | 甘蓉丽, 罗光前, 许洋, 等. 低温等离子体协同铜铈催化剂脱除甲苯[J]. 化工进展, 2018, 37(9): 3416-3423. |
GANRongli, LUOGuangqian, XUYang, et al. Removal of toluene by non-thermal plasma coupled with Cu-Ce catalysts[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3416-3423. | |
54 | JIANGNan, HUJian, LIJie, et al. Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas[J]. Applied Catalysis B: Environmental, 2016, 184: 355-363. |
55 | DELIMARISD,IOANNIDEST. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B:Environmental, 2008, 84(1/2): 303-312. |
56 | 李静, 韩世同, 白书培, 等. 低温等离子体协同催化处理VOC技术中填充材料的研究进展[J]. 化工科技, 2006, 14(5): 33-39. |
LIJing, HANShitong, BAIShupei, et al. Recent progress of catalysts filled in the non-thermal plasma-catalyst hybrid system used for removing benzene[J]. Chemical Process Technology, 2006, 14(5): 33-39. | |
57 | LEE B Y, PARKS H, LEE S C, et al. Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system[J]. Catalysis Today, 2004, 93(9): 769-776. |
58 | 赵坤, 党小庆, 朱海瀛, 等. 负载型催化剂联合低温等离子体去除甲苯[J]. 环境工程学报, 2016, 10(7): 3756-3762. |
ZHAOKun, DANGXiaoqing, ZHUHaiying, et al. Removal of toluene using of non-thermal plasma combined with supported catalysts[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3756-3762. | |
59 | 陈春雨, 刘彤, 王卉, 等. 低温等离子体与MnOx/γ-Al2O3协同催化降解正己醛[J]. 催化学报, 2012, 33(6): 941-951. |
CHENChunyu, LIUTong, WANGHui, et al. Removal of hexanal by non-thermal plasma and MnOx/γ-Al2O3 combination[J]. Chinese Journal of Catalysis, 2012, 33(6): 941-951. | |
60 | GUOYufang, YEDaiqi, CHENKefu, et al. Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2006, 245(1/2): 93-100. |
61 | ZHUXinbo, TUXin, MEIDanhua, et al. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method[J]. Chemosphere, 2016, 155: 9-17. |
62 | 毛灵爱. 低温等离子体协同催化氧化苯的研究[D]. 浙江: 浙江工商大学, 2018. |
MAOLing’ai. Study on plasma-catalytic oxidation of benzene[D]. Hangzhou: Zhejiang Gongshang University, 2018. | |
63 | 刘翔. 等离子体作用下复合催化剂处理有机废气的研究[D]. 武汉: 武汉工程大学, 2015. |
LIUXiang. The organic waste gas disposed by composite catalyst under plasma treatment[D]. Wuhan: Wuhan Institute of Technology, 2015. | |
64 | FUQiang, LIWeixue, YAOYunxi, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5982): 1141-1144. |
65 | 张成华, 杨勇, 陶智超, 等. Cu、K助剂对FeMn/SiO2催化费托合成的影响[J]. 物理化学学报, 2006, 22(11): 1310-1316. |
ZHANGChenghua, YANGYong, TAOZhichao, et al. Effects of Cu and K on Co-precipitated FeMn/SiO2 catalysts for Fischer-Tropsch synthesis[J]. Acta Physico-Chimica Sinica, 2006, 22(11): 1310-1316. | |
66 | 党小庆, 周宇翔, 黄家玉, 等. 等离子体催化氧化深度净化含苯废气的实验研究[C]// 中国电除尘学术会议, 2015. |
DANGXiaoqing, ZHOUYuxiang, HUANGJiayu, et al. Experimental study on deep purification of benzene-containing waste gas by plasma catalytic oxidation[C]// Chinese Academic Conference on Electric Dust Removal, 2015. | |
67 | 王光军, 王方园, 顾震宇, 等. 低温等离子体-光催化降解涂装行业VOC技术[J]. 广州化工, 2018, 46(10): 112-113. |
WANGGuangjun, WANGFangyuan, GUZhenyu, et al. Waste gas treatment based on synergy of low temperatune plasma combustion and photocatalysis[J]. Guangzhou Chemical Industry, 2018, 46(10): 112-113. | |
68 | 吴侨旭, 陈树沛. 低温等离子体协同光催化技术治理挥发性有机物[J]. 广东化工, 2017, 44(12): 225-226. |
WUQiaoxu, CHENShupei. Low temperature plasma with photocatalytic treatment technology for the treatment of volatile organic compounds[J]. Guangdong Chemical Industry, 2017, 44(12): 225-226. | |
69 | 王洪昌. 介质阻挡放电去除气态混合VOCs的研究[D]. 大连: 大连理工大学, 2010. |
WANGHongchang. Study on removal of mixed VOCs in air by dielectric barrier discharge[D]. Dalian: Dalian University of Technology, 2010. | |
70 | 尚静, 杜尧国, 徐自力. TiO2纳米粒子气-固复相光催化氧化VOCs作用的研究进展[J]. 环境污染治理技术与设备, 2000, 1(3): 67-76. |
SHANGJing, DUYaoguo, XUZili. Progress in gas-solid heterogeneous photocatalytic oxidation of VOCs on TiO2 nanoparticle [J]. Techniques and Equipments for Environmental Pollution Control, 2000, 1(3): 67-76. | |
71 | 谢志辉, 陈林根, 孙丰瑞, 等. 纳米二氧化钛协同放电等离子体降解甲苯的实验研究[J]. 高压电器, 2010, 46(1): 13-16. |
XIEZhihui, CHENLingen, SUNFengrui, et al. Experimental study on toluene decomposition by synergic effect of discharge plasma with nano-TiO2 catalyst[J]. High Voltage Apparatus, 2010, 46(1): 13-16. | |
72 | CHENJie, XIEZhengmiao, TANGJunhong, et al. Oxidation of toluene by dielectric barrier discharge with photo-catalytic electrode[J]. Chemical Engineering Journal, 2016, 284: 166-173. |
73 | WALLISA E, WHITEHEADJ C, ZHANGKui. Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2[J]. Catalysis Letters, 2007, 113(1/2): 29-33. |
74 | 马琳. 低温等离子体协同光催化技术处理甲苯和硫化氢的实验研究[D]. 北京: 北京工业大学, 2013. |
LinMA. Removal of toluene and hydrogen sulfide by non-thermal plasma coupled with photocatalyst[D]. Beijing: Beijing University of Technology, 2013. | |
75 | 姚超坤. DBD协同光催化降解有机废气实验研究[D]. 西安: 西安理工大学, 2018. |
YAOChaokun. Experimental study on degradation of VOCs by DBD synergistic photocatalysts[D]. Xi’an: Xi’an University of Technology, 2018. | |
76 | 岳鑫桂, 黄倩, 马培艳, 等. 介质阻挡放电协同光催化处理挥发性有机物[J]. 高电压技术, 2015, 41(10): 3523-3528. |
YUEXingui, HUANGQian, PeiyanMA, et al. Volatile organic compounds treatment by dielectric barrier discharge cooperating with photo-catalytic[J]. High Voltage Engineering, 2015, 41(10): 3523-3528. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |