Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 3927-3935.DOI: 10.16085/j.issn.1000-6613.2018-2047
• Invited review • Previous Articles Next Articles
Zhen ZHANG1,2(),Baodong WANG1,Xinglei ZHAO1,Ge LI1,Hongyan WANG1,Jiali ZHOU1,Qi SUN1()
Received:
2018-10-16
Online:
2019-09-05
Published:
2019-09-05
Contact:
Qi SUN
张甄1,2(),王宝冬1,赵兴雷1,李歌1,王红妍1,周佳丽1,孙琦1()
通讯作者:
孙琦
作者简介:
张甄(1987—),女,博士研究生,研究方向为催化化学。E-mail:基金资助:
CLC Number:
Zhen ZHANG,Baodong WANG,Xinglei ZHAO,Ge LI,Hongyan WANG,Jiali ZHOU,Qi SUN. Research progress of energy utilization of CO2 by photoelectrocatalysis[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3927-3935.
张甄,王宝冬,赵兴雷,李歌,王红妍,周佳丽,孙琦. 光电催化二氧化碳能源化利用研究进展[J]. 化工进展, 2019, 38(9): 3927-3935.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2047
45 | HAN B , WANG J , YAN C , et al . The photoelectrocatalytic CO2 reduction on TiO2@ ZnO heterojunction by tuning the conduction band potential[J]. Electrochimica Acta, 2018, 285(1): 23-29. |
46 | SCHREIER M , HEROGUEL F , STEIER L , et al . Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO[J]. Nature Energy, 2017, 2(7): 17087. |
1 | ZHAO S , JIN R , JIN R . Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS Energy Letters, 2018, 3(2): 452-462. |
2 | YU L , XIE Y , ZHOU J , et al . Robust and selective electrochemical reduction of CO2: the case of integrated 3D TiO2@ MoS2 architectures and Ti-S bonding effects[J]. Journal of Materials Chemistry A, 2018, 6(11): 4706-4713. |
3 | ZHOU M , WANG S , YANG P , et al . Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2 [J]. ACS Catalysis, 2018, 8(6): 4928-4936. |
4 | CHU S , OU P, GHAMATI P , et al . Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface[J]. Journal of the American Chemical Society, 2018, 140(25): 7869-7877. |
47 | ZHUANG T T , LIANG Z Q , SEIFITOKALDANI A , et al . Steering post-C—C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018, 1(6): 421. |
48 | DINH C T , BURDYNY T , KIBRIAM G , et al . CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787. |
5 | RAVESC, EBBESEN S D , MOGENSEN M , et al . Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 1-23. |
6 | GRATZEL M . Photoelectrochemical cells[J]. Nature, 2001, 414(1): 338-344. |
7 | HAN E , HU F , ZHANG S , et al . Worm-like FeS2/TiO2 nanotubes for photoelectrocatalytic reduction of CO2 to methanol under visible light[J]. Energy & Fuels, 2018, 32(4): 4357-4363. |
8 | BRUCE P G , FREUNBERGER S A , HARDWICK L J , et al . Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19. |
49 | AGER J W , LAPKIN A A . Chemical storage of renewable energy[J]. Science, 2018, 360(6390): 707-708. |
9 | STOLARCZYK J K , BHATTACHARYYA S , POLAVARAPU L , et al . Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures[J]. ACS Catalysis, 2018, 8(4): 3602-3635. |
10 | 景维云, 毛庆, 石越, 等 . CO2电催化还原制烃类产物的研究进展[J]. 化工进展, 2017, 36(6): 2150-2157. |
JING W Y , MAO Q , SHI Y , et al . Research progress on CO2 electrocatalytic reduction of hydrocarbon products[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2150-2157. | |
11 | 彭辉, 吴志红, 张建林, 等 . 基于能带匹配理论设计CO2光催化还原催化剂的研究进展[J]. 化工进展, 2014, 33(11): 3007-3012. |
PENG H , WU Z H , ZHANG J L , et al . Research progress in designing CO2 photocatalytic reduction catalysts based on energy band matching theory[J]. Chemical Industry and Engineering Progress, 2014, 33(11):3007-3012. | |
12 | WANG P , WANG S , WANG H , et al . Recent progress on photo-electrocatalytic reduction of carbon dioxide[J]. Particle & Particle Systems Characterization, 2018, 35(1): 1700371. |
13 | FUJISHIMA A , HONDA K . Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37. |
14 | BOLTON J R . Solar fuels[J]. Science, 1978, 202(4369): 705-711. |
15 | QIAO J , LIU Y , HONG F , et al . A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
16 | HONG J , ZHANG W , REN J , et al . Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods[J]. Analytical Methods, 2013, 5(5): 1086-1097. |
17 | SURDHAR P S , MEZYKS P , ARMSTRONG D A . Reduction potential of the carboxyl radical anion in aqueous solutions[J]. The Journal of Physical Chemistry, 1989, 93(8): 3360-3363. |
18 | HUYNH M H V , MEYER T J . Proton-coupled electron transfers[J]. Chemical Reviews, 2007, 107(11): 5004-5064. |
19 | COTENTIN C , ROBERT M , SAVEANTJ M . Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6): 2423-2436. |
20 | HABISREUTINGER S N , SCHMIDT-MENDE L , STOLARCZYK J K . Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angew and Chemie International Edition, 2013, 52(29): 7372-7408. |
21 | ZHANG N , LONG R , GAO C , et al . Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels[J]. Science China Materials, 2018, 61(6): 771-805. |
22 | HALMANN M . Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J]. Nature, 1978, 275(5676): 115. |
23 | LI H , LEI Y , HUANG Y , et al . Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation[J]. Journal of Natural Gas Chemistry, 2011, 20(2): 145-150. |
24 | ARAI T , SATO S , UEMURA K , et al . Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex[J]. Chemical Communications, 2010, 46(37): 6944-6946. |
25 | KANECO S , KATSAMATA H , SUZUKI T , et al . Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes[J]. Applied Catalysis B: Environmental, 2006, 64(1/2): 139-145. |
26 | AMPELLI C , CENTI G , PASSALACQUA R , et al . Synthesis of solar fuels by a novel photoelectrocatalytic approach[J]. Energy & Environmental Science, 2010, 3(3): 292-301. |
27 | MAGESH G , KIM E S , KANG H J , et al . A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials[J]. Journal of Materials Chemistry A, 2014, 2(7): 2044-2049. |
28 | TEMPA T J LA , RANI S , BAO N , et al . Generation of fuel from CO2 saturated liquids using a p-Si nanowire parallel to n-TiO2 nanotube array photoelectrochemical cell[J]. Nanoscale, 2012, 4(7): 2245-2250. |
29 | SHAN B , NAYAK A , SAMPAIO R N , et al . Direct photoactivation of a nickel-based, water-reduction photocathode by a highly conjugated supramolecular chromophore[J]. Energy & Environmental Science, 2018, 11(2): 447-455. |
30 | SHAN B , NAYAKA, BRENNAMAN M K , et al . Controlling vertical and lateral electron migration using a bifunctional chromophore assembly in dye-sensitized photoelectrosynthesis cells[J]. Journal of the American Chemical Society, 2018, 140(20): 6493-6500. |
31 | WANG J C , OGUNSOLU O O , SYKORA M , et al . Elucidating the role of the metal linking ion on the excited state dynamics of self-assembled bilayers[J]. The Journal of Physical Chemistry C, 2018, 122(18): 9835-9842. |
32 | QIU J , ZENG G , HAM A, et al . Artificial photosynthesis on TiO2-passivated InP nanopillars[J]. Nano Letters, 2015, 15(9): 6177-6181. |
33 | AURIAN-BLAJENI B , HALAMANN M , MANASSCN J . Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-gallium phosphide and p-gallium arsenide semiconductor electrodes[J]. Solar Energy Materials, 1983, 8(4): 425-440. |
34 | KAMATA R , KUMAGAI H , YAMAZAKIY, et al . Photoelectrochemical CO2 reduction using a Ru(II)-Re(I) supramolecular photocatalyst connected to a vinyl polymer on a NiO electrode[J]. ACS Applied Materials & Interfaces, 2018, 11(6): 5632-5641. |
35 | CHEN L , WANG Z , KANG P . Efficient photoelectrocatalytic CO2 reduction by cobalt complexes at silicon electrode[J]. Chinese Journal of Catalysis, 2018, 39(3): 413-420. |
36 | YONEYAMA H , SUGIMURA K , KUWABATA S . Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 249(1/2): 143-153. |
37 | XIE S , ZHANG Q , LIU G , et al . Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chemical Communications, 2016, 52(1): 35-59 |
38 | CHOI C H , CHUNG J , WOO S I . Photoelectrochemical production of formic acid and methanol from carbon dioxide on metal-decorated CuO/Cu2O-layered thin films under visible light irradiation[J]. Applied Catalysis B: Environmental, 2014, 158(1): 217-223. |
39 | LATEMPAT J , RANI S , BAO N , et al . Generation of fuel from CO2 saturated liquids using a p-Si nanowire‖ n-TiO2 nanotube array photoelectrochemical cell[J]. Nanoscale, 2012, 4(7): 2245-2250. |
40 | HIROTAK, TRYK D A , YAMAMOTO T , et al . Photoelectrochemical reduction of CO2 in a high-pressure CO2 methanol medium at p-type semiconductor electrodes[J]. The Journal of Physical Chemistry B, 1998, 102(49): 9834-9843. |
41 | KANECO S , KATSUMATA H , SUZUKI T , et al . Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol[J]. Chemical Engineering Journal, 2006, 116(3): 227-231. |
42 | LI Z , CHENG H , LI Y , et al . H2O2 treated CdS with enhanced activity and improved stability by a weak negative bias for CO2 photoelectrocatalytic reduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4325-4334. |
43 | LI B , NIU W , CHENG Y , et al . Preparation of Cu2O modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH[J]. Chemical Physics Letters, 2018, 700 (1): 57-63. |
44 | ZHENG J , LI X , QIN Y , et al . Zn phthalocyanine/carbon nitride heterojunction for visible light photoelectrocatalytic conversion of CO2 to methanol[J]. Journal of Catalysis, 2019, 371(1): 214-223. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[8] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[9] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[10] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[11] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[12] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[13] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[14] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[15] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |