Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2854-2861.DOI: 10.16085/j.issn.1000-6613.2018-1861
• Materials science and technology • Previous Articles Next Articles
Renjiang LÜ(),Renhao CAI,Yingjie LI(),Lidi GAO,Shili QIN
Received:
2018-09-14
Online:
2019-06-05
Published:
2019-06-05
Contact:
Yingjie LI
通讯作者:
李英杰
作者简介:
吕仁江(1970—),男,副教授,博士,研究方向为纳米材料。 E-mail: <email>lvrenjiang123@163.com</email>。
基金资助:
CLC Number:
Renjiang LÜ, Renhao CAI, Yingjie LI, Lidi GAO, Shili QIN. Preparation and electrochemical property of CeO2 doped hollow carbon nanofibers[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2854-2861.
吕仁江, 蔡人浩, 李英杰, 高丽娣, 秦世丽. 二氧化铈掺杂中空碳纳米纤维的制备及电化学性能[J]. 化工进展, 2019, 38(06): 2854-2861.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1861
样品 | 样品中Ce的质量分数/% |
---|---|
H-1 | 7.42 |
H-2 | 14.23 |
H-3 | 20.79 |
H-4 | 22.64 |
样品 | 样品中Ce的质量分数/% |
---|---|
H-1 | 7.42 |
H-2 | 14.23 |
H-3 | 20.79 |
H-4 | 22.64 |
实验次数 | 稳定性测试 | 重复性测试 |
---|---|---|
1 | 1.996×10-5 | 1.963×10-5 |
2 | 1.965×10-5 | 1.981×10-5 |
3 | 1.921×10-5 | 1.966×10-5 |
4 | 1.816×10-5 | 1.984×10-5 |
5 | 1.807×10-5 | 1.950×10-5 |
实验次数 | 稳定性测试 | 重复性测试 |
---|---|---|
1 | 1.996×10-5 | 1.963×10-5 |
2 | 1.965×10-5 | 1.981×10-5 |
3 | 1.921×10-5 | 1.966×10-5 |
4 | 1.816×10-5 | 1.984×10-5 |
5 | 1.807×10-5 | 1.950×10-5 |
1 | LI J , TU D H , LI Y , et al . Co-N-doped carbon nanotubes supported on diatomite for highly efficient catalysis oxidative carbonylation of amines with CO and air[J]. Applied Catalysis A: General, 2018, 549:112-116. |
2 | YIN Z Z , CHENG S W , XU L B , et al . Highly sensitive and selective sensor for sunset yellow based on molecularly imprinted polydopamine-coated multi-walled carbon nanotubes[J]. Biosensors and Bioelectronics, 2018, 100: 565-570. |
3 | JAFAR A , NIYAZ M M , MANOUCHEHR V ,et al . Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4)as a novel adsorbent for selective dye removal from multicomponent systems[J].Microporous & Mesoporous Materials,2018,273:177-188. |
4 | TANS S J , VERSCHUEREN A R M , DEKKER C .Room-temperature transistor based on a single carbon nanotube[J].Nature,1998,393(6680):49-52. |
5 | BACHTOLD A , PETER H , TAKESHII N ,et al .Logic circuits with carbon nanotube transistors.[J].Science,2001,294(5545):1317-1320. |
6 | XIONG W P , ZENG Z T , LI X ,et al .Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites:remarkable adsorptive removal of antibiotics from aqueous solutions[J].Chemosphere,2018, 210:1061-1069. |
7 | WANG H , HUANG X W , LI W ,et al .TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,549:205-211. |
8 | LÜ R J , SHI K Y , ZHOU W ,et al .Highly dispersed Ni-decorated porous hollow carbon nanofibers: fabrication, characterization,and NO x gas sensors at room temperature[J].Journal of Materials Chemistry,2012,22(47): 24814-24820. |
9 | LEE Y G , LIAO B X , WENG Y C . Ruthenium oxide modified nickel electrode for ascorbic acid detection[J]. Chemosphere, 2017, 173:512-519. |
10 | LIU H , NA W D , LIU Z P ,et al .A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe[J].Biosensors and Bioelectronics,2017,92:229-233. |
11 | 杨秋媚,丁雷,涂进春,等 .铈酸镍空心球的合成及其抗坏血酸电化学敏感性能[J].材料科学与工程学报,2018,36(3):443-448. |
YANG Q M , DING L , TU J H ,et al .NiCo2O4 hollow spheres:synthesis of and electrochemical sensitivity against ascorbic acid[J].Journal of Materials Science and Engineering,2018,36(3):443-448. | |
12 | SUNTORNSUK L , GRITSANAPUN W , NILKAMHANK S , et al . Quantitation of vitamin C content in herbal juice using direct titration[J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 28(5):849-855. |
13 | ZBYNEK G , ONDREJ Z , JITKA P , et al . Determination of vitamin C (ascorbic acid) using high performance liquid chromatography coupled with electrochemical detection[J]. Sensors, 2008, 8(11):7097-7112. |
14 | FENOLL J , MARTÍNEZ A , HELLÍN P ,et al . Simultaneous determination of ascorbic and dehydroascorbic acids in vegetables and fruits by liquid chromatography with tandem-mass spectrometry[J].Food Chemistry,2011,127(1):340-344. |
15 | FRENICH A G , TORRES M E H , VEGA A B ,et al . Determination of ascorbic acid and carotenoids in food commodities by liquid chromatography with mass spectrometry detection[J]. Journal of Agricultural and Food Chemistry, 2005, 53(19):7371-7376. |
16 | WANG G Q , CHEN Z P , CHEN L X .Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating[J]. Nanoscale,2011,3(4):1756-1759. |
17 | PENG J , LING J , ZHANG X Q ,et al . A rapid,sensitive and selective colorimetric method for detection of ascorbic acid[J].Sensors and Actuators B: Chemical,2015,221(31):708-716. |
18 | NEZHAD H M R , KARIMI M A , SHAHHEYDARI F . A sensitive colorimetric detection of ascorbic acid in pharmaceutical products based on formation of anisotropic silver nanoparticles[J]. Scientia Iranica,2010,17(2):148-153. |
19 | KHODAVEISI J , DADFARNIA S , HAJI SHABANI A M , et al . Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharmaceutical samples using localized surface plasmon resonance band of silver nanoparticles[J]. Spectrochim Acta A: Molecular and Biomolecular Spectroscopy, 2015, 138(2): 474-480. |
20 | XIA Y S , YE J J , TAN K H ,et al . Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system[J].Analytical Chemistry,2013,85(13):6241-6247. |
21 | CHARBGOO F , RAMEZANI M , DARROUDI M . Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages[J]. Biosensors and Bioelectronics, 2017, 96:33-43. |
22 | SUN X L , WANG H , JIAN Y N ,et al . Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection[J].Biosensors and Bioelectronics,2018,105(15):218-225. |
23 | LÜ R J , ZHOU W , SHI K Y ,et al . Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO x gas sensors at room temperature[J]. Nanoscale,2013,5(18):8569-8576. |
24 | LI Y C , ZHONG Y M , ZHANG Y Y ,et al . Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor[J].Sensors and Actuators B: Chemical,2015,206(3):735-743. |
25 | HUANG Y , YAN C F , GUO C Q ,et al . Synthesis of GO-modified Cu2O nanosphere and the photocatalytic mechanism of water splitting for hydrogen production[J].International Journal of Hydrogen Energy,2017,2(7):4007-4016. |
26 | BENEDETTO A D , LANDI G , LISI L .Improved CO-PROX performance of CuO/CeO2 catalysts by using nanometric ceria as support[J]. Catalysts,2018,8(5):209-218. |
27 | 谭学才, 韦冬萍, 邓光辉,等 .维生素C在多壁碳纳米管/壳聚糖复合膜修饰玻碳电极上的电化学行为及测定[J].分析测试学报,2007,26(5):662-666. |
TAN X C , WEI D P , DENG G H ,et al . Electrochemical behaviour and determ ination of vitamin C based on multiwalled carbon nanotubes/chitosan composite film modified glassy carbon electrode[J]. Journal of Instrumental Analysis,2007,26(5):662-666. | |
28 | 赵晓慧, 孙金妮, 李其林,等 .基于氧化亚铜纳米立方体的无酶葡萄糖传感器的研制[J].化学传感器,2013,33(3):49-54. |
ZHAO X H , SUN J N , LI Q L ,et al . The preparation of nonenzymatic glucose sensor based on the Cu2O nanocubes[J].Chemical Sensors,2013,33(3):49-54. | |
29 | ZHOU F , ZHAO X M , XU H ,et al . CeO2 spherical crystallites:synthesis,formation mechanism,size control,and electrochemical property study[J].J. Phys. Chem. C,2007,111(4):1651-1657. |
30 | SHA R , BADHULIKA S . Facile green synthesis of reduced graphene oxide/tin oxide composite for highly selective and ultra-sensitive detection of ascorbic acid[J]. Journal of Electroanalytical Chemistry, 2018,816(1):30-37. |
31 | SHI W , LIU C , SONG Y , et al . An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites[J]. Biosensors and Bioelectronics, 2012, 38(1):100-106. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[8] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[9] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[10] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[11] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[12] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[13] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[14] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[15] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |