Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2539-2549.DOI: 10.16085/j.issn.1000-6613.2018-1779
• Invited review • Previous Articles Next Articles
ZHANG Wei1,2,3, FANG Yiwei1,2,3, LU Cheng1,2,3, YIN Yanshan1,2,3, HU Zhangmao1,2,3, ZOU Jiyao1,2,3, CHEN Donglin1,2,3
Received:
2018-09-04
Revised:
2018-12-09
Online:
2019-06-05
Published:
2019-06-05
张巍1,2,3, 方毅伟1,2,3, 卢程1,2,3, 尹艳山1,2,3, 胡章茂1,2,3, 邹济遥1,2,3, 陈冬林1,2,3
通讯作者:
张巍(1974-),男,工学博士,讲师,硕士生导师,研究方向为燃烧过程与污染物控制。
作者简介:
张巍(1974-),男,工学博士,讲师,硕士生导师,研究方向为燃烧过程与污染物控制。E-mail:weizhang@csust.edu.cn。
基金资助:
CLC Number:
ZHANG Wei, FANG Yiwei, LU Cheng, YIN Yanshan, HU Zhangmao, ZOU Jiyao, CHEN Donglin. Research progress in texture modification of modified catalyst for low temperature NH3-SCR denitrification[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2539-2549.
张巍, 方毅伟, 卢程, 尹艳山, 胡章茂, 邹济遥, 陈冬林. 改性催化剂织构强化低温NH3-SCR脱硝性能的研究进展[J]. 化工进展, 2019, 38(06): 2539-2549.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1779
[1] LIU C, SHI J W, GAO C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:a reviewe[J]. Applied Catalysis A:General,2016,522:54-69. [2] 阮冬亮,盘思伟,韦正乐,等. 砷对商业V2O5-WO3/TiO2催化剂脱硝性能的影响[J]. 化工进展,2014,33(4):925-929. RUAN D L, PAN S W, WEI Z L, et al. Effect of arsenic on de-NO efficiency over commercial V2O5-WO3/TiO2 catalyst[J]. Chemical Industry and Engineering Progress,2014,33(4):925-929. [3] 尚会建,张少红,赵丹,等. 分子筛催化剂的研究进展[J]. 化工进展, 2011,30(s1):407-410. SHANG H J, ZHANG S H, ZHAO D, et al. Research progress of molecular sieve catalyst[J]. Chemical Industry and Engineering Progress,2011,30(s1):407-410. [4] 顾卫荣,周明吉,马薇,等. 选择性催化还原脱硝催化剂的研究进展[J]. 化工进展,2012,31(7):1493-1500. GU W R, ZHOU M J, MA W, et al. Research progress on selective catalytic reduction de-NOx catalysts[J]. Chemical Industry and Engineering Progress,2012,31(7):1493-1500. [5] 仝建波,蔺阳,刘淑玲,等. 加氢脱硫催化剂载体的研究进展[J]. 化工进展,2014,33(5):1170-1179. TONG J B, LIN Y, LIU S L, et al. Recent progress in the support of hydrodesulfurization catalysts[J]. Chemical Industry and Engineering Progress,2014,33(5):1170-1179. [6] 韦正乐,黄碧纯,叶代启,等. 烟气NOx低温选择性催化还原催化剂研究进展[J].化工进展,2007,26(3):320-325. WEI Z L, HUANG B C, YE D Q, et al. Review of catalysts for lowtemperature SCR of NOx[J]. Chemical Industry and Engineering Progress, 2007, 26(3):320-325. [7] ZENG Y Q,WANG Y N,ZHANG S L, et al. One-pot synthesis of ceria and cerium phosphate (CeO2-CePO4) nanorod composites for selective catalytic reduction of NO with NH3:active sites and reaction mechanism[J]. Colloid Interface Science,2018,524:8-15. [8] BAI S L, JIANG S T, LI H Y, et al. Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature[J]. Chinese Journal of Chemical Engineering,2015,23:516-519. [9] LI H,ZHANG D,MAITARAD P,et al. In situ synthesis of 3D flowerlike NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3[J]. Chemical Communications,2012,48(86):10645-10647. [10] 李伟, 林涛, 张秋林,等. 整体式MnOx-CeO2/ZrO2-TiO2催化剂用于NH3低温选择性催化还原NO[J]. 催化学报,2009,30(2):104-110. LI W, LIN T, ZHANG Q L, et al. Low temperature selective catalytic reduction of NO with NH3 over MnOx-CeO2/ZrO2-TiO2 monolith catalyst[J]. Chinese Journal of Catalysis,2009, 30(2):104-110. [11] GILLOT S,GREGORY T,HERVE V,et al. Induced effect of tungsten incorporation on the catalytic properties of CeVO4 systems for the selective reduction of NOx by ammonia[J]. Applied Catalysis B:Environmental,2018,234:318-328. [12] 张巍,卢程,董鹏飞,等. 铜系低温选择性催化还原脱硝催化剂的研究进展[J]. 化工进展,2018,37(10):3865-3974. ZHANG W, LU C, DONG P F, et al. Research progress of low temperature SCR denitration catalyst for copper[J]. Chemical Industry and Engineering Progress,2018,37(10):3865-3974. [13] CHEN J X,PAN K L,YU S J, et al, Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal[J]. Environmental Science Pollution Research International, 2017, 24(26):21496-21508. [14] YOSHIDA K. Diesel NOx aftertreatment by combined process using temperature swing adsorption, nonthermal plasma, and NOx recirculatin:NOx removal accelerated by conversion of NO to NO2[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(6):1054-1059. [15] YAO J, ZHONG Z P. TiO2 preparation by improved homogeneous precipitation and application in SCR catalyst[J]. Journal of Central South University,2016,23(9):2139-2145. [16] ARFAOUI J, ADBELHAMID G, CAROLINA P, et al. Novel V2O5-CeO2-TiO2-SO42-nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2[J]. Applied Catalysis B:Environmental,2018,224:264-275. [17] 薛纪纬. SCR催化剂的制备和脱硝性能影响因素的研究[D]. 北京:北京交通大学,2010. XUE J W. Resesrch on SCR catalyst preparation and influence factors of de-NOx performance[D]. Beijing:Beijing Jiaotong University,2010. [18] 高凤雨,唐晓龙,易红宏,等. 商用SCR催化剂的钙中毒及再生研究[C]//2013北京国际环境技术研讨会.2013:116-122. GAO F Y, TANG X L, YI H H, et al. Studies on calcium poisoning mechanism and regeneration of commercial de-NOx SCR catalysts[C]//2013 Beijing International Environmental Technology Conference. 2013:116-122. [19] LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. Journal of Physical Chemistry C, 2010,114:16929-16936. [20] HUANG J,HUANG H,LIU L C, et al. Revisit the effect of manganese oxidation state on activity in low-temperature NO-SCR[J]. Molecular Catalysis,2018,446:49-57. [21] GUO R T, SUN X, LIU J, et al. Enhancement of the NH3-SCR catalytic activity of MnTiOx catalyst by the introduction of Sb[J]. Applied Catalysis A:General,2018,558:1-8. [22] 甄开吉,王国甲,李荣生,等. 催化作用基础[M].北京:科学出版社, 2005:39-58. ZHEN K J, WANG G J, LI R S, et al. Catalysis basis[M]. Beijing:Science Press,2005:39-58. [23] 王栋,吴惊坤,牛胜利,等. Sn、Ti掺杂改性γ-Fe2O3催化剂结构及NH3-SCR脱硝活性研究[J]. 燃料化学学报,2015,43(7):876-883. WANG D, WU J K, NIU S L, et al. Structural property of γ-Fe2O3 catalysts doped with Sn and Ti and their activity in the selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology,2015,43(7):876-883. [24] WANG F,MA J Z,HE G Z,et al. Nanosize effect of Al2O3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia[J]. ACS Catalysis, 2018,8(4):2670-2682. [25] 杨颖欣,马杰文,喻成龙,等. 不同SAPO分子筛负载MnOx催化剂的低温NH3-SCR性能研究[J].环境科学学报,2016,36(9):3400-3408. YANG Y X, MA J W, YU C L, et al. Low-temperature NH3-SCR activity of manganese oxides supported on different SAPO molecular sieves catalysts[J]. Acta Scientiae Circumstantiae, 2016, 36(9):3400-3408. [26] 左建良. 氮氧化物低温选择性催化还原锰基催化剂研究[D]. 广州:华南理工大学, 2014. ZUO J L. Study on Mn-based catalysts for low-temperature selective catalytic reduction of NOx[D]. Guangzhou:South China University of Technology,2014. [27] CHEN H F, XIA Y, HUANG H, et al. Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR[J]. Chemical Engineering Journal,2017,330(15):1195-1202. [28] WU Z B, JIANG B, LIU Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental, 2008, 79(4):347-355. [29] 卢朋,鲁卫哲,李欢,等. 自蔓延高温燃烧合成法制备CeWTiOx催化剂及其NH3-SCR性能[J].燃料化学学报,2017,45(8):986-992. LU P, LU W Z, LI H, et al. Preparation of CeWTiOx catalysts via selfpropagating high temperature synthesis and its NH3-SCR performance[J]. Journal of Fuel Chemistry and Technology,2017,45(8):986-992. [30] MA Y G, ZHANG D Y, SUN H M, et al. Fe-Ce mixed oxides supported on carbon nanotubes for simultaneous removal of NO and HgO in flue gas[J]. Industrial & Engineering Chemistry Research, 2018, 57(9):3187-3194. [31] YAO X J, CHEN L, KONG T T, et al. Support effect of the supported ceria-based catalysts during NH3-SCR reaction[J].Chinese Journal of Catalysis,2017, 38(8):1423-1430. [32] CHEN J X, CHEN Y X, ZHOU M Z, et al. Enhanced performance of ceria-based NOx reduction catalysts by optimal support effect[J]. Environmental Science Technology, 2017,51(1):473-478. [33] PAN W G, HONG J N, GUO R T, et al. Effect of support on the performance of Mn-Cu oxides for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Industrial and Engineering Chemistry,2014,20(4):2224-2227. [34] 周卫可, 闫东杰,黄学敏,等. 锰基低温SCR催化剂研究进展[J]. 应用化工,2017,46(10):2010-2013. ZHOU W K,YAN D J,HUANG X M, et al. Progress in the research of manganese-based low-temperature SCR catalyst[J]. Applied Chemical Industry,2017,46(10):2010-2013. [35] SHEN B X,LIU T,ZHAO N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences,2010,22(9):1447-1454. [36] FRANCE L J, YANG Q, CEHN Z H, et al. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Applied Catalysis B:Environmental, 2017, 206:203-215. [37] WANG X B,WU S G,ZOU W X, et al. Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis,2016,37(8):1314-1323. [38] CAO F, XIANG J, SU S, et al. The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2014,243:347-354. [39] WEI Z,LU C,DONG P F, et al. Fractal reconstruction of microscopic rough surface for soot layer during ceramic filtration based on weierstrass-mandelbrot function[J]. Industrial & Engineering Chemistry Research,2018,57(11):4033-4044. [40] XU B Q, XU H D, LIN T, et al. Promotional effects of Zr on K+-poisoning resistance of CeTiOx catalyst for selective catalytic reductionof NOx with NH3[J]. Chinese Journal of Catalysis,2016,37(8):1354-1361. [41] CHEN Q L, GUO R T, WANG Q S, et al. The promotion effect of Co doping on the K resistance of Mn/TiO2 catalyst for NH3-SCR of NO[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64:116-123. [42] 向瑛. 低温等离子体改性催化剂脱除氮氧化物研究[D]. 昆明:昆明理工大学, 2013. XIANG Y. Research on catalysts treated by non-thermal plasma for nitrogen oxide reduction[D]. Kunming:Kunming University of Science and Technology, 2013. [43] 于开录,刘昌俊,夏清,等. 低温等离子技术在催化剂领域的应用[J]. 化学进展,2002,14(6):456-461. YU K L, LIU C J, XIA Q, et al. Applications of low temperature plasma in catalysis[J]. Progress in Chemistry, 2002,14(6):456-461. [44] TANG X L, GAO F Y, XIANG Y, et al. Low temperature catalytic oxidation of nitric oxide over the Mn-CoOx catalyst modified by nonthermal plasma[J]. Catalysis Communications, 2015, 64:12-17. [45] CHEN K G, CHEN R Y, CANG H, et al. Plasma-treated Ce/TiO2-SiO2 catalyst for the NH3-SCR of NOx[J]. Environmental Technology, 2018, 39(14):1-12. [46] 赖瑞云. 低温等离子体改性锰镁复合催化剂催化处理NO研究[D]. 昆明:昆明理工大学,2014. LAI R Y. Research on Mn-Mg-Ox catalysts treated by non-thermal plasma for nitrogen oxide reduction[D]. Kunming:Kunming University of Science and Technology,2014. [47] 杨永辉. 超声强化在催化剂制备及催化反应中的应用[J].化学技术与开发,2012,41(11):32-34. YANG Y H. Applications of ultrasonic intensify in catalyst preparation and catalytic reactions[J]. Technology and Development of Chemical Industry,2012,41(11):32-34. [48] 郭坤,宋存义,常冠钦,等. 超声波浸渍法制备V2O5-WO3/TiO2选择性催化还原脱硝催化剂[J]. 环境工程,2013,31(2):76-79. GUO K,SONG C Y,CHANG G Q, et al. Preparation of V2O5-WO3/TiO2 catalysts by ultrasonic impregnation for selective catalytic reduction[J]. Environmental Engineering, 2013,31(2):76-79. [49] 赵晓媛,张亚平,仲佳鑫,等. 超声波浸渍法制备MnOx/TiO2催化剂低温选择性催化还原NO[J].东南大学学报,2011,41(6):1225-1230. ZHAO X Y, ZHANG Y P, ZHONG J X, et al. MnOx/TiO2 catalysts prepared by ultrasonic impregnation for low temperature selective catalytic reduction of NO[J]. Jourmal of Southeast University, 2014, 4(6):1225-1230. [50] ZHU L, ZHANG L, QU H X, et al. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. Journal of Molecular Catalysis A:Chemical,2015,409:207-215. [51] 胡宇峰,薛建明,王小明,等. Mn-Ce/TiO2低温选择性催化还原催化剂二氧化硫中毒及再生特性[J]. 工业催化,2013,21(4):27-33. HU Y F, XUE J M, WANG X M, et al. Research on characterisitics of SO2-poison and regeneration of Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction[J]. Industrial Catalysis, 2013, 21(4):27-33. [52] LIAN Z H, LIU F D, HE H. Effect of preparation methods on the activity of VOx/CeO2 catalysts for the selective catalytic reduction of NOx with NH3[J]. Catalysis Science & Technology, 2015,5(1):389-396. [53] VUONG T H, RADNIK J, SCHNEIDER M, et al. Effect of support synthesis methods on structure and performance of VOx/CeO2 catalysts in low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2016,84:171-174. [54] CHEN H, XIA Y, HUANG H, et al. Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR[J]. Chemical Engineering Journal, 2017, 330:1195-1202. [55] XU N, HU L, ZHANG Q, et al. Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles[J]. ACS Applied Materials & Interfaces, 2015, 7(49):27373-27381. [56] WANG M,IOCOZZIA J,SUN L, et al. Correction:inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis[J]. Energy & Environmental Science, 2017,7(7):2182-2202. [57] SHEN Q, ZHANG L Y, SUN N N, et al. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation[J]. Chemical Engineering Journal,2017,322:46-55. [58] VARGEESE A A, MURALIDHARAN K. Kinetics and mechanism of hydrothermally prepared copper oxide nanorod catalyzed decomposition of ammonium nitrate[J]. Applied Catalysis A:General, 2012,447/448:171-177. [59] HU X L, SHI Q,ZHANG H, et al. NH3-SCR performance improvement over Mo modified Mo(x)-MnOx nanorods at low temperatures[J]. Catalysis Today, 2017,297:17-26. [60] WU G X,LI J,FANG Z T, et al. FeVO4 nanorods supported TiO2 as a superior catalyst for NH3-SCR reaction in a broad temperature range[J]. Catalysis Communications,2015,64:75-79. [61] 杨兴业,李斌,孙亮,等. α-Fe2O3表面结构对NH3选择性催化还原NO活性的影响[J].物理化学学报,2012,28(1):184-188. YANG X Y, LI B, SUN L, et al. Effect of surface structure of α-Fe2O3 on the selective catalytic reduction of NO by NH3[J]. Acta PhysicoChimica Sinica,2012,28(1):184-188. [62] ZONG L Y, ZHANG G D, ZHAO J H, et al. Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3[J].Chemical Engineering Journal,2018,343:500-511. [63] WANG H, CAI K S, LIU J X, et al. Synthesis of nanosphere TiO2 with flower-like micro-composition and its application for the selective catalytic reduction of NO with NH3 at low temperature[J]. RSC Advances,2016,6(87):84294-84308. [64] ZONG L Y, ZHANG J Y, LU G X, et al. Controlled synthesis of TiO2 shape and effect on the catalytic performance for selective catalytic reduction of NOx with NH3[J]. Catalysis Surveys from Asia, 2018,22(2):105-117. [65] WU Z, JIANG B, LIU Y, et al. DRIFT study of manganese/titaniabased catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology, 2007,41(16):5812. [66] WANG P L,CHEN S,GAO S, et al. Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead[J]. Applied Catalysis B:Environmental,2018,231:299-309. [67] MA Z, DAI S. Design of novel structured gold nanocatalysts[J]. ACS Catalysis, 2011,1(7):805-818. [68] HUANG B J,YU D Q,SHENG Z Y, et al. Novel CeO2@TiO2 core-shell nanostructure catalyst for selective catalytic reduction of NOx with NH3[J]. Journal of Environment Science,2017,55:129-136. [69] ZHANG T, QIU F, LI J H. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NOx with NH3:enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Applied Catalysis B:Environmental, 2016,195:48-58. [70] YAO W Y, LIU Y, WU Z B. The promoting effect of CeO2@Ce-O-P multi -core@shell structure on SO2 tolerance for selective catalytic reduction of NO with NH3 at low temperature[J]. Applied Surface Science,2018,442:156-163. [71] LI S H, HUANG B C, YU C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2017, 98:47-51. [72] LIU J X, DU Y H, LIU J, et al. Design of MoFe/beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B:Environmental, 2017, 203:704-714. [73] LIU J X,LIU J, ZHAO Z, et al. Fe-beta@CeO2 core-shell catalyst with tunable shell thickness for selective catalytic reduction of NOx with NH3[J]. AIChE Journal, 2017, 63(10):4430-4441. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |