Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2320-2328.DOI: 10.16085/j.issn.1000-6613.2018-2339
• Industrial catalysis • Previous Articles Next Articles
Jun CHEN1(),Hongfei SHU1,Zhuhua RUAN1,Jiaqi NI1,Lilin LU1,2(),Yi LIU1
Received:
2018-11-30
Revised:
2019-02-15
Online:
2019-05-05
Published:
2019-05-05
Contact:
Lilin LU
陈俊1(),舒红飞1,阮祝华1,倪嘉琪1,鲁礼林1,2(),刘义1
通讯作者:
鲁礼林
作者简介:
<named-content content-type="corresp-name">陈俊</named-content>(1996—),男,硕士研究生,研究方向为能源催化。E-mail:<email>ylsn99866@sina.com</email>。
基金资助:
CLC Number:
Jun CHEN, Hongfei SHU, Zhuhua RUAN, Jiaqi NI, Lilin LU, Yi LIU. Catalysts and catalytic mechanism for hydrogen production from ethanol steam reforming (ESR)[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2320-2328.
陈俊, 舒红飞, 阮祝华, 倪嘉琪, 鲁礼林, 刘义. 乙醇催化重整产氢催化剂及催化反应机制[J]. 化工进展, 2019, 38(05): 2320-2328.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2339
1 | YADAV M , XU Q . Liquid-phase chemical hydrogen storage materials[J]. Energy Environmental Science, 2012, 5: 9698-9725. |
2 | MATTOS L V , JACOBS G , DAVIS B H , et al . Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation[J]. Chemical Reviews, 2012, 112(7): 4094-4123. |
3 | DAVIDSON S D , ZHANG H , SUN J , et al . Supported metal catalysts for alcohol/sugar alcohol steam reforming[J]. Dalton Transactions, 2014, 43(31): 11782-11802. |
4 | CONTRERAS J L , SALMONES J , COLIN-LUNA J A , et al . Catalysts for H2 production using the ethanol steam reforming (a review)[J]. International Journal of Hydrogen Energy, 2014, 39(33): 18835-18853. |
5 | HARYANTO A , FERNANDO S , MURALI N , et al . Current status of hydrogen production techniques by steam reforming of ethanol: a review[J]. Energy Fuels, 2005, 19(5): 2098-2106. |
6 | VAIDYA P D , RODRIGUES A E . Insight into steam reforming of ethanol to produce hydrogen for fuel cells[J]. Chemical Engineering Journal, 2006, 117(1): 39-49. |
7 | NI M , LEUNG D Y C , LEUNG M K H . A review on reforming bio-ethanol for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3238-3247. |
8 | PISCINA P R , HOMS N . Use of biofuels to produce hydrogen (reformation processes)[J]. Chemical Society Reviews, 2008, 37(11): 2459-2467. |
9 | LIGURAS D K , KONDARIDES D I , VERYKIOS X E . Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts[J]. Applied Catalysis B: Environmental, 2003, 43(4): 345-354. |
10 | CAVALLARO S , CHIODO V , FRENI S , et al . Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol for MCFC[J]. Applied Catalysis A: General, 2003, 249(1): 119-128. |
11 | LOPEZ E , DIVINS N J , LLORCA J . Hydrogen production from ethanol over Pd-Rh/CeO2 with a metallic membrane reactor[J]. Catalysis Today, 2012, 193(15): 145-150. |
12 | COBO M , PIERUCCINI D , ABELLO R , et al . Steam reforming of ethanol over bimetallic RhPt/La2O3: long-term stability under favorable reaction conditions[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5580-5593. |
13 | KOH A C W, LEONG W K , CHEN L , et al . Highly efficient ruthenium and ruthenium-platinum cluster-derived nanocatalysts for hydrogen production via ethanol steam reforming[J]. Catalysis Communications, 2008, 9(1): 170-175. |
14 | AUPRETRE F , DESCORME C , DUPREZ D . Bio-ethanol catalytic steam reforming over supported metal catalysts[J]. Catalysis Communications, 2002, 3(6): 263-267. |
15 | FRUSTERI F , FRENI S , SPADARO L , et al . H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts[J]. Catalysis Communications, 2004, 5(10): 611-615. |
16 | CONTRERAS J L , TAPIA C , FUENTES G A , et al . Equilibrium compostion of ethanol steam reforming reaction to produce H2 applied to Ni, Co, and Pt/hydrotalcite-WO x catalysts[J]. International Journal of Hydrogen Energy, 2014, 39(29): 16608-16618. |
17 | 王拓,田昊,张成喜,等 . 乙醇蒸汽重整制氢镍基催化剂的尺度效应与构效关系[J]. 科学通报, 2015, 60(33): 3230-3238. |
WANG T , TIAN H , ZHANG C X , et al . Particle size effect and structure-function relationship of Ni-based steam reforming catalysts[J]. Chinese Science Bulletin, 2015, 60(33): 3230-3238. | |
18 | HULL S , TRAWCZYNSKI J . Steam reforming of ethanol on zinc containing catalysts with spinel stucture[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4259-4265. |
19 | 李宝茹,殷雪梅,吴旭,等 . Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究[J]. 燃料化学学报, 2016, 44(8): 993-1000. |
LI B R , YIN X M , WU X , et al . Montmorillonite supported Ni-Fe catalysts for hydrogen production from steam reforming of ethanol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 993-1000. | |
20 | LI L , TANG D W , SONG Y C , et al . Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts[J]. Energy, 2018, 149(15): 937-943. |
21 | PANAGIOTOPOULOU P , VERYKIOS X E . Mechanistic aspects of the low temperature steam reforming of ethanol over supported Pt catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16333-16345. |
22 | CHEN L W , CHOONG C K S , ZHONG Z Y , et al . Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst[J]. Journal of Catalysis, 2010, 276(2): 197-200. |
23 | LANG L , ZHAO S H , YIN X L , et al . Catalytic activities of K-modified zeolite ZSM-5 supported rhodium catalysts in low-temperature steam reforming of bioethanol[J]. International Journal of Hydrogen Energy, 2015, 40(32): 9924-9934. |
24 | WU X S , KAWI S . Steam reforming of ethanol to H2 over Rh/Y2O3: crucial roles of Y2O3 oxidizing ability, space velocity and H2/C[J]. Energy Environmental Science, 2010, 3: 334-342. |
25 | WANG F G , CAI W J , PROVENDIER H , et al . Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: enhanced stability by PrO x promotion[J]. International Journal of Hydrogen Energy, 2011, 36(21): 13566-13574. |
26 | WANG F G , ZHANG L J , ZHU J Y , et al . Study on different CeO2 structure stability during ethanol steam reforming reaction over Ir/CeO2 nanocatalysts[J]. Applied Catalysis A: General, 2018, 564: 226-233. |
27 | SEKINE Y , NAKAZAWA Y , OYAMA K , et al . Effect of small amount of Fe addition on ethanol steam reforming over Co/ Al2O3 catalyst[J]. Applied Catalysis A: General, 2014, 472: 113-122. |
28 | KIM D, KWAK B S , MIN B K , et al . Characterization of Ni and W co-loaded SBA-15 catalyst and its hydrogen production catalytic ability on ethanol steam reforming reaction[J]. Applied Surface Science, 2015, 332: 736-746. |
29 | LI D , ZENG L , LI X Y , et al . Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation[J]. Applied Catalysis B: Environmental, 2015, 176/177: 532-541. |
30 | DAN M, MIHET M , TASNADI-ASZTALOS Z , et al . Hydrogen production by ethanol steam reforming on nickel catalysts: effect of support modification by CeO2 and La2O3 [J]. Fuel, 2015, 147: 260-268. |
31 | FERENCZ Z , ERDOHELYI A , BAAN K , et al . Effect of support and Rh additive on Co-based catalysts in the ethanol steam reforming reaction[J]. ACS Catalysis, 2014, 4(4): 1205-1218. |
32 | MEMON M Z , ZHAO X , SIKARWAR V S , et al . Alkali metal CO2 sorbents and the resulting metal carbonates: potential for process intensification of sorption-enhanced steam reforming[J]. Environmental Science Technology, 2017, 51(1): 12-27. |
33 | HAN S J , SONG J H , YOO J, et al . Sorption-enhanced hydrogen production by steam reforming of ethanol over mesoporous Co/CaO-Al2O3 xerogel catalysts: effect of Ca/Al molar ratio[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5886-5898. |
34 | COMPAGNONI M , TRIPODI A , ROSSETTI I . Parametric study and kinetic testing for ethanol steam reforming[J]. Applied Catalysis B: Environmental, 2017, 203: 899-909. |
35 | SILVA A M , SOUZA K R , JACOBS G , et al . Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 94-109. |
36 | WU Y J , SANTOS J C , LI P , et al . Simplified kinetic model for steam reforming of ethanol on a Ni/Al2O3 catalyst[J]. The Canadian Journal of Chemical Engineering, 2014, 92: 116-130. |
37 | HE S F , MEI Z Q , LIU N S , et al . Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: effect of nickel precursor[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14429-14438. |
38 | KWAK B S , LEE G, PARK S M , et al . Effect of MnO x in the catalytic stabilization of Co2MnO4 spinel during the ethanol steam reforming reaction[J]. Applied Catalysis A: General, 2015, 503: 165-175. |
39 | WU G W , LI S R , ZHANG C X , et al . Glycerol steam reforming over perovskite-derived nickel-based catalysts[J]. Applied Catalysis B: Environmental, 2014, 144: 277-285. |
40 | ZENG G M , LI Y D , OLSBYE U . Kinetic and process study of ethanol steam reforming over Ni/Mg(Al)O catalysts: the initial steps[J]. Catalysis Today, 2016, 259(2): 312-322. |
41 | ROMERO A , JABBAGY M , LABORDE M , et al . Ni(II)-Mg(II)-Al(III) catalysts for hydrogen production from ethanol steam reforming: influence of the Mg content[J]. Applied Catalysis A: General, 2014, 470: 398-404. |
42 | ROSSETTI I , LASSO J , NICHELE V , et al . Silica and zirconia supported catalysts for the low-temperature ethanol steam reforming[J]. Applied Catalysis B: Environmental, 2014, 150/151: 257-267. |
43 | NICHELE V , SIGNORETTO M , PINNA F , et al . Ni/ZrO2 catalysts in ethanol steam reforming: Inhibition of coke formation by CaO-doping[J]. Applied Catalysis B: Environmental, 2014, 150/151: 12-20. |
44 | ZHAO L , WEI Y , HUANG Y M , et al . La1- x K x Fe0.7Ni0.3O3 catalyst for ethanol steam reforming-The effect of K-doping[J]. Catalysis Today, 2016, 259(2): 430-437. |
45 | SILVA A L M , BREEJEN J P , MATTOS L V , et al . Cobalt particle size effects on catalytic performance for ethanol steam reforming-smaller is better[J]. Journal of Catalysis, 2014, 318: 67-74. |
46 | WANG Z J , WANG C X , CHEN S Q , et al . Co-Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5644-5652. |
47 | KLOUZ V , FIERRO V , DENTON P , et al . Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimisation[J]. Journal of Power Source, 2002, 105(1): 26-34. |
48 | TRANE-RESTRUP R , DAHL S , JENSEN A D . Steam reforming of ethanol over Ni-based catalysts: effect of feed composition on catalyst stability[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7735-7746. |
49 | BEDNARCZUK L , PISCINA P R , HOMS N . H2-production from CO2-assisted ethanol steam reforming: the regeneration of Ni-based catalysts[J]. International Journal of Hydrogen Energy, 2015, 40(15): 5256-5263. |
50 | MONDAL T , PANT K K , DALAI A K . Oxidative and non-oxidative steam reforming of crude bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst[J]. Applied Catalysis A: General, 2015, 499: 19-31. |
51 | VOZNIUK O , AGNOLI S , ARTIGLIA L , et al . Towards an improved process for hydrogen production: the chemical-loop reforming of ethanol[J]. Green Chemistry, 2016, 18: 1038-1050. |
52 | MORAES T S , NETO R C R , RIBEIRO M C , et al . Ethanol conversion at low temperature over CeO2-Supported Ni-based catalysts. Effect of Pt addition to Ni catalyst[J]. Applied Catalysis B: Environmental, 2016, 181: 754-768. |
53 | ABELLO S , BOLSHAK E , GISPERT-GUIRADO F , et al . Ternary Ni-Al-Fe catalysts for ethanol steam reforming[J]. Catalysis Science & Technology, 2014, 4: 1111-1122. |
54 | KRALEVA E , SOKOLOV S , NASILLO G , et al . Catalytic performance of CoAlZn and NiAlZn mixed oxides in hydrogen production by bio-ethanol partial oxidation[J]. International Journal of Hydrogen Energy, 2014, 39(1): 209-220. |
55 | MORETTI E , STORARO L , TALON A , et al . Ceria-zirconia based catalysts for ethanol steam reforming[J]. Fuel, 2015, 153: 166-175. |
56 | YU S W , HUANG H H , TANG C W , et al . The effect of accessible oxygen over Co3O4-CeO2 catalysts on the steam reforming of ethanol[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20700-20711. |
57 | FRANCHINI C A , ARANZAEZ W , FARIAS A M D , et al . Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming[J]. Applied Catalysis B: Environmental, 2014, 147: 193-202. |
58 | GUIL J M , HOMS N , LLORCA J , et al . Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts[J]. The Journal of Physical Chemistry B, 2005, 109(21): 10813-10819. |
59 | CHOONG C , ZHONG Z Y , HUANG L , et al . Infrared evidence of a formate-intermediate mechanism over Ca-modified supports in low-temerature ethanol steam reforming[J]. ACS Catalysis, 2014, 4(7): 2359-2363. |
60 | SUN J M , KARIM A M , MEI D H , et al . New insights into reaction mechanisms of ethanol steam reforming on Co-ZrO2 [J]. Applied Catalysis B: Environmental, 2015, 162: 141-148. |
61 | LIU Z Y , XU W Q , YAO S Y , et al . Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: synergistic effects of W- and Ni-dopants[J]. Journal of Catalysis, 2015, 321: 90-99. |
62 | CROWLEY S , CASTALDI M J . Mechanistic insights into catalytic ethanol steam reforming using isotope-labeled reactants[J]. Angewandte Chemie International Edition, 2016, 55(36): 10650-10655. |
63 | SUTTON J E , PANAGIOTOPOULOU P , VERYKIOS X E , et al . Combined DFT, microkinetic, and experimental study of ethanol steam reforming on Pt[J]. The Journal of Physical Chemistry C, 2013, 117(9): 4691-4706. |
64 | ZHANG J , ZHONG Z Y , CAO X M , et al . Ethanol steam reforming on Rh catalysts: theoretical and experimental understanding[J]. ACS Catalysis, 2014, 4(2): 448-456. |
65 | LIN S , HUANG J , GAO X M , et al . Theoretical insight into the reaction mechanism of ethanol steam reforming on Co(0001)[J]. The Journal of Physical Chemistry C, 2015, 119(5): 2680-2691. |
66 | LI M R , CHEN J , WANG G C . Reaction mechanism of ethanol on model cobalt catalysts: DFT calculations[J]. The Journal of Physical Chemistry C, 2016, 120(26): 14198-14208. |
67 | ZANCHET D , SANTOS J B O , DAMYANOVA S , et al . Toward understanding metal-catalyzed ethanol reforming[J]. ACS Catalysis, 2015, 5(6): 3841-3863. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[9] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |