Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1921-1929.DOI: 10.16085/j.issn.1000-6613.2018-1351
• Fine chemicals • Previous Articles Next Articles
Chao SU(),Peilun SHEN,Jialei LI,Jinpeng CAI,Siyan LIU,Yang CAO,Dianwen LIU()
Received:
2018-07-02
Revised:
2018-11-19
Online:
2019-04-05
Published:
2019-04-05
Contact:
Dianwen LIU
通讯作者:
刘殿文
作者简介:
苏超(1995—),男,硕士研究生,研究方向为资源综合利用与环保。E-mail:<email>1342592576@qq.com</email>。|刘殿文,教授,博士生导师,研究方向为资源综合利用与环保、浮选理论与工艺。E-mail:<email>ldwkust@163.com</email>。
基金资助:
CLC Number:
Chao SU, Peilun SHEN, Jialei LI, Jinpeng CAI, Siyan LIU, Yang CAO, Dianwen LIU. A review on depression and derepression of pyrite flotation[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1921-1929.
苏超, 申培伦, 李佳磊, 蔡锦鹏, 刘思言, 曹阳, 刘殿文. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38(04): 1921-1929.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1351
成因类型 | 内部结构 | 破碎方式 | 破碎后表面形貌 |
---|---|---|---|
中低温热液型 | 交代环状、聚型变晶 | 晶界处破裂 | 椭圆形,表面有凸起和台阶 |
中高温热液型 | 微裂隙 | 形成新鲜破裂面 | 板条状,破裂面平滑 |
热水沉积性 | 聚型变晶、重 结晶 | 形成新鲜破裂面 | 板条状,破裂面平滑 |
矽卡岩型 | 结构缺陷少 | 形成新鲜破裂面 | 板条状,破裂面平滑 |
煤系沉积型 | 草莓微晶 | 结构缺陷处破裂 | 保留原始的矿物微球集合体 |
成因类型 | 内部结构 | 破碎方式 | 破碎后表面形貌 |
---|---|---|---|
中低温热液型 | 交代环状、聚型变晶 | 晶界处破裂 | 椭圆形,表面有凸起和台阶 |
中高温热液型 | 微裂隙 | 形成新鲜破裂面 | 板条状,破裂面平滑 |
热水沉积性 | 聚型变晶、重 结晶 | 形成新鲜破裂面 | 板条状,破裂面平滑 |
矽卡岩型 | 结构缺陷少 | 形成新鲜破裂面 | 板条状,破裂面平滑 |
煤系沉积型 | 草莓微晶 | 结构缺陷处破裂 | 保留原始的矿物微球集合体 |
1 | WÄCHTERSHÄUSER G . Pyrite formation, the first energy source for life: a hypothesis[J]. Systematic & Applied Microbiology, 1988, 10(3): 207-210. |
2 | CHEN J , ZHOU X , MEI C , et al . Pyrite FeS2, nanobelts as high-performance anode material for aqueous pseudocapacitor[J]. Electrochimica Acta, 2016, 222: 172-176. |
3 | 乐长高, 姜国芳, 刘云海 . 氧化亚铁硫杆菌生物冶金的新进展[J]. 生物技术, 2003, 13(3): 45-47. |
LE Changgao , JIANG Guofang , LIU Yunhai . Mechanism on Thiobacilus ferrooxidans bioleaching[J]. Biotechnology, 2003, 13(3): 45-47. | |
4 | 张鹏羽, 欧乐明, 曾令明, 等 . 隐晶质石墨浮选脱硫试验研究[J]. 中国矿业, 2018(1): 143-147. |
ZHANG Pengyu , Leming OU , ZENG Lingming , et al . Research on desulfurization of aphanitic graphite[J]. China Mining Magazine, 2018(1): 143-147. | |
5 | 刘成 . 德兴铜矿酸性废水成因的研究[J]. 中国矿山工程, 2001, 30(4): 49-53. |
LIU Cheng . Study on the cause of formation of acidic waste water in Dexing copper mine[J]. Nonferrous Mines, 2001, 30(4): 49-53. | |
6 | 解文康, 周杰强, 陈兴华, 等 . 河南某高硫铝土矿浮选脱硫试验研究[J]. 有色金属(选矿部分), 2017(1): 43-45. |
XIE Wenkang , ZHOU Jieqiang , CHEN Xinghua , et al . Study on the flotation desulfurization of high-sulfur bauxite in henan[J]. Nonferrous Metals Mieral Processing Section, 2017(1): 43-45. | |
7 | 洪微 . 煤尾矿中硬质高岭土选矿提纯试验研究[D]. 武汉: 武汉理工大学, 2014. |
HONG wei . Study of benefication and purification on hard kaolin from coal tailings[D]. Wuhan: Wuhan University of Technology, 2014. | |
8 | 邱仙辉, 于洋, 张春菊 . 鞣酸体系下黄铜矿与黄铁矿浮选动力学分析[J]. 化工进展, 2016, 35(7): 2258-2262. |
QIU Xianhui , YU Yang , ZHANG Chunju . Flotation kinetics of chalcopyrite and pyrite in tannic acid system[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2258-2262. | |
9 | 陈建华 . 硫化矿物浮选晶格缺陷理论[M]. 长沙: 中南大学出版社, 2012. |
CHEN Jianhua . Principles of the flotation of sulphide minerals bearing lattice defects[M]. Changsha: Central South University Press, 2012. | |
10 | 李玉琼 . 晶格缺陷对黄铁矿晶体电子结构和浮选行为影响的第一性原理研究[D]. 南宁: 广西大学, 2011. |
LI Yuqiong . First principle study of the influences of lattice defects on the electronic structures and flotation behavlours of pyrite crytal[D]. Nanning: Guangxi University, 2011. | |
11 | 李玉琼, 陈建华, 陈晔 . 空位缺陷黄铁矿的电子结构及其浮选行为[J]. 物理化学学报, 2010, 26(5): 1435-1441. |
LI Yuqiong , CHEN Jianhua , CHEN Ye . Electronic structures and flotation behavior of pyrite containing vacancy defects[J]. Acta Physico-Chimica Sinica, 2010, 26(5): 1435-1441. | |
12 | 先永骏 . 黄铁矿晶体缺陷及其表面吸附特性的研究[D]. 昆明: 昆明理工大学, 2013. |
XIAN Yongjun . Study on crystal defects and adsorption characteristics of pyrite[D]. Kunming: Kunming University of Science and Technology, 2013. | |
13 | 郗朋, 刘文礼, 韩永华, 等 . 煤系黄铁矿晶格缺陷与可浮性的机理研究[J]. 煤炭学报,2016, 41(4): 997-1003. |
XI | LIU Peng , , HAN Yonghua , et al . Study on the mechanism of coal pyrite crystal lattice defects and floatability[J]. Journal of China Coal Society, 2016, 41(4): 997-1003. |
14 | 于进喜 . 碳掺杂对黄铁矿电子结构性质与浮选行为的影响[J]. 矿冶工程, 2013, 33(5): 63-67. |
YU Jinxi . Influence of carbon doping on electronic properties and flotation behavior of pyrite[J]. Mining and Metallurgical Engineering, 2013, 33(5): 63-67. | |
15 | 杨多, 黄菲, 姚健鹏, 等 . 热硫化纳米黄铁矿的晶体结构特征及其热电性能研究[J]. 人工晶体学报, 2014, 43(12): 3086-3092. |
YANG Duo , HUANG Fei , YAO Jianpeng , et al . Study on crystalline structure characterization and thermoelectric properties of nano-pyrite[J]. Journal of Synthetic Crystals, 2014, 43(12): 3086-3092. | |
16 | 郭永文 . 影响黄铁矿可浮性的若干问题[J]. 有色金属(选矿部分), 1982(6): 37-44. |
GUO Yongwen . Some problems affecting the floatability of pyrite[J]. Nonferrous Metals Mieral Processing Section, 1982(6): 37-44. | |
17 | 陈述文, 胡熙庚 . 黄铁矿的温差电动势率与可浮性关系[J]. 矿冶工程, 1990, 10(3): 17-21. |
CHEN Shuwen , HU Xigeng . Relations between thermoelectromotive force ratio of pyrite and its flotability[J]. Mining and Metallurgical Engineering, 1990, 10(3): 17-21 | |
18 | 凌竞宏, 胡熙庚 . 黄铁矿的可浮性与半导性的关系[J]. 化工矿物与加工, 1988(5): 15-21. |
LING Jinghong , HU Xigeng . The relationship between floatability and semiconductivity of pyrite[J]. Industrial Minerals & Processing, 1988(5): 15-21. | |
19 | 于宏东, 孙传尧 . 不同成因黄铁矿的物性差异及浮游性研究[J]. 中国矿业大学学报, 2010, 39(5): 758-764. |
YU Hongdong , SUN Chuanyao . Study of divergences of floatability and physical property of pyrite from different geo-genetic deposits[J]. Journal of China University of Mining & Technology, 2010, 39(5): 758-764. | |
20 | 卢龙 . 黄铁矿表面反应研究[D]. 南京: 南京大学, 2002. |
LU Long . Study on surface reaction of pyrite[D]. Nanjing : Nanjing University, 2002. | |
21 | 张胜男, 黄菲, 黄涛,等 . 红透山黄铁矿的热电性研究[J]. 沈阳师范大学学报(自然科学版), 2011, 29(2): 181-184. |
ZHANG Shengnan , HUANG Fei , HUANG Tao , et al . Pyroelectricity of Hongtoushan pyrite[J]. Journal of Shenyang Normal University(Natural Science Edition), 2011, 29(2): 181-184. | |
22 | 姜毛, 张覃, 李龙江 . 杂质对黄铁矿电子性质及可浮性影响的密度泛函理论研究[J]. 矿物学报, 2014, 34(4): 528-534. |
JIANG Mao , ZHANG Qin , LI Longjiang . A DFT study on the effect of lattice impurities on the electronic structures and floatability of pyrite[J]. Acta Mineralogica Sinica, 2014, 34(4): 528-534. | |
23 | EJTEMAEI M , NGUYEN A V . Characterisation of sphalerite and pyrite surfaces activated by copper sulphate[J]. Minerals Engineering, 2017, 100: 223-232. |
24 | PENG Y , WANG B , GERSON A . The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding[J]. International Journal of Mineral Processing, 2012, 102(s 102/103): 141-149. |
25 | CHANDRA A P , PUSKAR L , SIMPSON D J , et al . Copper and xanthate adsorption onto pyrite surfaces: implications for mineral separation through flotation[J]. International Journal of Mineral Processing, 2012, 114-117(8): 16-26. |
26 | 陈建华 . 硫化矿物浮选固体物理研究[M]. 长沙: 中南大学出版社, 2015. |
CHEN Jianhua . The solide physics of sulphide minerals flotation[M]. Changsha: Central South University Press, 2015. | |
27 | 李佳磊, 宋凯伟, 刘殿文, 等 . 闪锌矿浮选的活化与去活化研究进展[J]. 过程工程学报, 2018(1): 11-19. |
LI Jialei , SONG Kaiwei , LIU Dianwen , et al . Research progress on activation and deactivation of sphalerite flotation[J]. The Chinese Journal of Process Engineering, 2018(1): 11-19. | |
28 | SUI C C, BRIENNE S H R , RAO S R , et al . Metal ion production and transfer between sulphide minerals[J]. Minerals Engineering, 1995, 8(12): 1523-1539. |
29 | EKMEKQI Z , DEMIREL H . Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite[J]. International Journal of Mineral Processing, 1997, 52: 31-48. |
30 | 周丽, 李和平, 徐丽萍 . 开放体系下方铅矿和黄铁矿之间原电池反应的实验研究[J]. 矿物岩石, 2006, 26(1): 110-115. |
ZHOU Li , LI Heping , XU Liping . An experimental study on galvanic interaction between galena and pyrite in an open system[J]. Journal of Mineralogy and Petrology, 2006, 26(1): 110-115. | |
31 | 覃文庆, 龙怀中, 邱冠周, 等 . 高碱(石灰)体系中黄铁矿表面性质及其活化[J]. 有色金属工程, 1996(4): 35-38. |
QIN Wenqing , LONG Huaizhong , QIU Guanzhou , et al . Surface characteristics and activation of pyrite in high alkaline and calcium medium[J]. Nonferrous Metals Engineering, 1996(4): 35-38. | |
32 | 张英, 覃武林, 孙伟, 等 . 石灰和氢氧化钠对黄铁矿浮选抑制的电化学行为[J]. 中国有色金属学报, 2011, 21(3): 675-679. |
ZHANG Ying , QIN Wulin , SUN Wei , et al . Electrochemical behaviors of pyrite flotation using lime and sodium hydroxide as depressantors[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 675-679. | |
33 | 孙体昌, 李定一, 张润仙 . 石灰与黄铁矿作用时间对抑制效果的影响及机理[J]. 有色金属(选矿部分), 2002(2): 41-44. |
SUN Tichang , LI Dingyi , ZHANG Runxian . The effect of action time of lime on the depression of pyrite[J]. Nonferrous Metals Mieral Processing Section, 2002(2): 41-44. | |
34 | JANETSKI N D , WOODBURN S I , WOODS R . An electrochemical investigation of pyrite flotation and depression[J]. International Journal of Mineral Processing, 1977, 4(3): 227-239. |
35 | HE S , SKINNER W , FORNASIERO D . Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite[J]. International Journal of Mineral Processing, 2006, 80(2): 169-176. |
36 | SHEN W Z , FORNASIERO D , RALSTON J . Flotation of sphalerite and pyrite in the presence of sodium sulfite[J]. International Journal of Mineral Processing, 2001, 63(1): 17-28. |
37 | ELGILLANI D A , FUERSTENAU M C . Mechanisms involved in cyanide depression of pyrite[J]. Trans. AIME, Soc. Min. Eng., 1968, 241: 437-445. |
38 | GUO B , PENG Y , PARKER G . Electrochemical and spectroscopic studies of pyrite-cyanide interactions in relation to the depression of pyrite flotation[J]. Minerals Engineering, 2016, 92: 78-85. |
39 | AGORHOM E A , SKINNER W , ZANIN M . Post-regrind selective depression of pyrite in pyritic copper-gold flotation using aeration and diethylenetriamine[J]. Minerals Engineering, 2015, 72: 36-46. |
40 | HE M F , QIN W Q , LI W Z , et al . Pyrite depression in marmatite flotation by sodium glycerine-xanthate[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1161-1165. |
41 | WANG Z , QIAN Y , XU L H , et al . Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant[J]. Minerals Engineering, 2015, 74: 86-90. |
42 | BOULTON A , FORNASIERO D , RALSTON J . Selective depression of pyrite with polyacrylamide polymers[J]. International Journal of Mineral Processing, 2001, 61(1): 13-22. |
43 | RATH R K , SUBRAMANIAN S , PRADEEP T . Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants[J]. Journal of Colloid & Interface Science, 2000, 229(1): 82-91. |
44 | MU Y , PENG Y , LAUTEN R A . The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions[J]. Minerals Engineering, 2016, 92: 37-46. |
45 | MU Y , PENG Y , LAUTEN R A . The depression of copper-activated pyrite in flotation by biopolymers with different compositions[J]. Minerals Engineering, 2016, 96/97: 113-122. |
46 | LIU Runqing , SUN Wei , HU Yuehua , et al . Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite[J]. Journal of Central South University, 2009, 16(5): 753-757. |
47 | 朱玉霜, 朱建光 . 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1987. |
ZHU Yushuang , ZHU Jianguang . Chemical principle of flotation reagents[M]. Changsha: Central South University of Technology Press, 1987. | |
48 | CHEN J , LI Y , CHEN Y . CuS flotation separation via the combination of sodium humate and lime in a low pH medium[J]. Minerals Engineering, 2011, 24(1): 58-63. |
49 | LÜ C C , WANG Y L , QIAN P , et al . Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate[J]. Chinese Journal of Chemical Engineering, 2018. |
50 | CHANDRAPRABHA M N , NATARAJAN K A , MODAK J M . Selective separation of pyrite and chalcopyrite by biomodulation[J]. Colloids & Surfaces B: Biointerfaces, 2004, 37(3): 93-100. |
51 | MARTÍN F S , KRACHT W , VARGAS T . Biodepression of pyrite using Acidithiobacillus ferrooxidans in seawater[J]. Minerals Engineering, 2017, 117: 127-131. |
52 | PATRA P , NATARAJAN K A . Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa [J]. J. Colloid Interface Sci., 2006, 298(2): 720-729. |
53 | CHANDRAPRABHA M N , NATARAJAN K A . Surface chemical and flotation behaviour of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans [J]. Hydrometallurgy, 2006, 83(1): 146-152. |
54 | 王李鹏 . 高碱高钙受抑黄铁矿浮选活化剂的性能研究[J]. 化工矿物与加工, 2013(4): 12-14. |
WANG Lipeng . Study on performance of high lime inhibition pyrite activator[J]. Industrial Minerals & Processing, 2013(4): 12-14. | |
55 | 胡岳华, 王淀佐 . 石灰抑制的黄铁矿的活化及活化剂结构-性能[J]. 有色金属工程, 1996(4): 24-28. |
HU Yuehua , WANG Dianzuo . Activation of pyrite depressed by lime and structure-property of activators[J]. Nonferrous Metals Engineering, 1996(4): 24-28. | |
56 | HUANG Hongjun , HU Yuehua , SUN Wei . Activation flotation and mechanism of lime-depressed pyrite with oxalic acid[J]. International Journal of Mining Science and Technology, 2012, 22(1): 63-67. |
57 | 孙伟, 张英, 覃武林, 等 . 被石灰抑制的黄铁矿的活化浮选机理[J]. 中南大学学报(自然科学版), 2010, 41(3): 813-818. |
SUN Wei , ZHANG Ying , QIN Wulin , et al . Activated flotation of pyrite once depressed by lime[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 813-818. | |
58 | 覃武林 . 高碱抑制硫铁矿及活化浮选机理研究[D]. 长沙: 中南大学, 2009. |
QIN Wulin . Study on mechanism of high alkaline depression and activation of pyrite flotation[D]. Changsha: Central South University, 2009. | |
59 | 黄尔君, 冯育武 . 铵盐对黄铁矿的活化作用及其机理研究[J]. 有色金属(选矿部分), 1996(2): 33-37. |
HUANG Erjun , FENG Yuwu . Study on the activation and mechanism of ammonium salts on pyrite flotation[J]. Nonferrous Metals Mieral Processing Section, 1996(2): 33-37. | |
60 | 田震 . 浅析结晶工艺参数的优化[J]. 无机盐工业, 2008, 40(6): 37-38. |
TIAN Zhen . Simple analysis on optimization of technological parameters of crystallization[J]. Inorganic Chemicals Industry, 2008, 40(6): 37-38. | |
61 | XIE Xiaojun , KELEBEK S . Activation of xanthate flotation of pyrite by ammonium salts following it's depression by lime[J]. Developments in Mineral Processing, 2000, 13: C8b-43-C8b-50. |
62 | 肖骏, 黄圣淇, 董艳红, 等 . 某铅锌尾矿中被石灰抑制黄铁矿活化试验研究[J]. 湖南有色金属, 2017, 33(3): 9-12. |
XIAO Jun , HUANG Shengqi , DONG Yanhong , et al . Activation experimental study on the pyrite suppressed by lime from a lead-zinc Tailing[J]. Hunan Nonferrous Metals, 2017, 33(3): 9-12. | |
63 | LI Y , CHEN J , KANG D , et al . Depression of pyrite in alkaline medium and its subsequent activation by copper[J]. Minerals Engineering, 2012, 26(1): 64-69. |
64 | 尹启华, 冯其明 . 高碱高钙介质中黄铁矿活化机理的研究[J]. 有色金属(选矿部分), 1997(3): 18-21. |
YIN Qihua , FENG Qiming . Study on the activation mechanism of pyrite in high alkali and high calcium medium[J]. Nonferrous Metals (Mineral Processing Section), 1997(3): 18-21. |
[1] | ZHANG Guangyu, ZHAO Jian, SUN Feng, JIANG Jie, SUN Bing, XU Wei. Recent advances on catalytic conversion of CO2 into propylene carbonate: catalyst design, performance and reaction mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189. |
[2] | HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. |
[3] | LI Yanping, YAN Dazhou, YANG Tao, WEN Guosheng, HAN Zhicheng. Removal of methylchlorosilane in silicon-based electron gas by molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4375-4385. |
[4] | CHANG Yaoping, GUAN Xiushuai, ZHENG Qian, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Hydrothermal preparation of 3D flower-spherical Bi2SiO5 for photocatalytic esterification of oleic acid [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4181-4191. |
[5] | CHEN Huan, WAN Kun, NIU Bo, ZHANG Yayun, LONG Donghui. Recent progresses in chemical recycling and upcycling of waste plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1453-1469. |
[6] | LIU Qingfeng, LIAO Yalong, WU Yue, XI Jiajun, JI Guangxiong. Research progress on enhancing leaching efficiency of chalcopyrite [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6099-6110. |
[7] | JI Zike, BAO Cheng. Research progress of selective CO methanation [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 120-132. |
[8] | ZHANG Wenhui, HUA Rui, QI Suitao. Research progress of low temperature Fischer-Tropsch synthetic wax oil hydrocracking refining technology [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 81-87. |
[9] | TIAN Yuanyu, QIAO Yingyun. Construction and application of the radical regulation reaction mechanism in petroleum pyrolysis [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2928-2932. |
[10] | Yitao LIU, Minghui ZHU, Zixu YANG, Bo MENG, Weifeng TU, Yifan HAN. Advances of catalysts for direct synthesis of lower olefins from syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594-604. |
[11] | SUN Yue, LIU Lingling, LI Xinquan, PAN Jianfeng, LIU Jiabin. Research progress in mechanisms and effects of various additives used for preparing electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5861-5874. |
[12] | CHEN Huichao, LI Xue, LIANG Xiao, WANG Meng. Research development of mechanochemistry in environmental pollution control [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6332-6346. |
[13] | MA Xinru, GUO Tao, WANG Qun, LI Junmei, ZHANG Zhennan, CAO Qing. Preparation and properties of coal pitch-based water-absorbing resin [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5634-5641. |
[14] | Jiapeng JIAO, Haifeng TIAN, Huanhuan HE, Fei ZHA, Xiaojun GUO, Xiaohua TANG. Recent advanced of CO/CO2 hydrogenation to aromatics [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 205-220. |
[15] | Caixia LIAN, Ning LI, Wu JIANG, Hao MA, Han PENG. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation(HDO) of biomass oil [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |