Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1182-1189.DOI: 10.16085/j.issn.1000-6613.2018-1185
Previous Articles Next Articles
Meng YANG(),Hua ZHANG(),Yanbin QIN,Zhaofeng MENG
Received:
2018-06-06
Revised:
2018-11-26
Online:
2019-03-05
Published:
2019-03-05
Contact:
Hua ZHANG
通讯作者:
张华
作者简介:
基金资助:
CLC Number:
Meng YANG,Hua ZHANG,Yanbin QIN,Zhaofeng MENG. Thermodynamic performance comparison and experimental study of mixed refrigerant R134a/R1234yf (R513A) and R134a[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1182-1189.
杨梦,张华,秦延斌,孟照峰. 混合制冷剂R134a/R1234yf(R513A)与R134a热力学性能对比及实验[J]. 化工进展, 2019, 38(03): 1182-1189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1185
装置 | 类型 | 精度 | 量程 |
---|---|---|---|
热电偶 | T形 | ±0.1℃ | –50~100℃ |
压力传感器 | TM NS-I1 | ±0.05% FS | 0~2MPa |
功率计 | YOKOGAWA WT230 | ±0.1% | 3000W |
装置 | 类型 | 精度 | 量程 |
---|---|---|---|
热电偶 | T形 | ±0.1℃ | –50~100℃ |
压力传感器 | TM NS-I1 | ±0.05% FS | 0~2MPa |
功率计 | YOKOGAWA WT230 | ±0.1% | 3000W |
项目 | R134a | R1234yf | R513A |
---|---|---|---|
组分 | 纯 | 纯 | R134a/R1234yf 44/56① |
安全等级 | A1 | A1 | A1 |
摩尔质量/g·mol-1 | 102.03 | 114.04 | 108.43 |
GWP | 1430 | A1 | 570[ |
标准沸点/℃ | –26.07 | <1.00 | –28.30 |
临界温度/℃ | 101.06 | –29.45 | 97.70 |
临界压力/MPa | 4.06 | 94.70 | 3.70 |
临界密度/kg·m-3 | 511.90 | 3.38 | 490.90 |
温度滑移②/℃ | 0 | 475.600 | 0.015 |
潜热③/kJ·kg-1 | 198.60 | 0 | 171.27 |
液体密度③/kg·m-3 | 1294.8 | 163.3 | 1226.5 |
气体密度③/kg·m-3 | 14.4 | 1176.3 | 16.1 |
液相热导率③/mW·m-3·℃-1 | 92.0 | 17.6 | 79.9 |
气相热导率③/mW·m-3·℃-1 | 11.5 | 71.5 | 11.7 |
液相黏度③/μPa·s | 266.5 | 11.6 | 232.2 |
气相黏度③/μPa·s | 10.7 | 208.3 | 10.5 |
项目 | R134a | R1234yf | R513A |
---|---|---|---|
组分 | 纯 | 纯 | R134a/R1234yf 44/56① |
安全等级 | A1 | A1 | A1 |
摩尔质量/g·mol-1 | 102.03 | 114.04 | 108.43 |
GWP | 1430 | A1 | 570[ |
标准沸点/℃ | –26.07 | <1.00 | –28.30 |
临界温度/℃ | 101.06 | –29.45 | 97.70 |
临界压力/MPa | 4.06 | 94.70 | 3.70 |
临界密度/kg·m-3 | 511.90 | 3.38 | 490.90 |
温度滑移②/℃ | 0 | 475.600 | 0.015 |
潜热③/kJ·kg-1 | 198.60 | 0 | 171.27 |
液体密度③/kg·m-3 | 1294.8 | 163.3 | 1226.5 |
气体密度③/kg·m-3 | 14.4 | 1176.3 | 16.1 |
液相热导率③/mW·m-3·℃-1 | 92.0 | 17.6 | 79.9 |
气相热导率③/mW·m-3·℃-1 | 11.5 | 71.5 | 11.7 |
液相黏度③/μPa·s | 266.5 | 11.6 | 232.2 |
气相黏度③/μPa·s | 10.7 | 208.3 | 10.5 |
制冷剂 | 充注量/g | E d/W·h | t run/min | t off/min | R |
---|---|---|---|---|---|
R134a | 85 | 1351.5 | 20.3 | 10.7 | 0.65 |
R513A | 80 | 1265.3 | 16 | 13 | 0.55 |
制冷剂 | 充注量/g | E d/W·h | t run/min | t off/min | R |
---|---|---|---|---|---|
R134a | 85 | 1351.5 | 20.3 | 10.7 | 0.65 |
R513A | 80 | 1265.3 | 16 | 13 | 0.55 |
1 | Chemical Production Division Canada . Consultation document: proposed regulatory measures on hydrofluorocarbons[EB/OL]. 2015.http∶//www.ec.gc.ca/ozone/default.asp?lang=En&n=77A94123-1. |
2 | The European Parliament and the Council of the European Union . Regulation (EU) No 517/2014 of the European parliament and the council of 16 April 2014 on fluorinated greenhouse gases and repealing regulation (EC) No 842/2006 text with EEA relevance[J]. Official J. Eur. Union, 2014, 57(L 150): 195-230. |
3 | 陈敬良, 史琳, 李红旗, 等 . 由制冷剂替代谈起[J]. 制冷与空调, 2017,17(9):1-5. |
CHEN J L , SHI L , LI H Q , et al . Reflection on refrigerant substitution[J]. Refrigeration and Air-Conditioning, 2017, 17(9): 1-5. | |
4 | MCLINDEN M O , BROWN J S , BRIGNOLI R , 等 . 低GWP值制冷剂的有限选择[J]. 暖通空调, 2017, 47(8): 41-50. |
MCLINDEN M O , BROWN J S , BRIGNOLI R , et al . Limited option for low-global-warming-potential refrigerants[J]. Journal of HV&AC, 2017, 47(8): 41-50. | |
5 | GRAZIOSI F , ARDUINI J , FURLANI F , et al . European emissions of the powerful greenhouse gases hydrofluorocarbons inferred from atmospheric measurements and their comparison with annual national reports to UNFCCC[J]. Atmospheric Environment, 2017, 158: 85-97. |
6 | Proposal for a council decision on the conclusion of the agreement to amend the montreal protocol on substances that deplete the ozone layer adopted in Kigali . Brussels, Belgium European Commission[Z]. 2017. |
7 | MOTA-BABILONI A , NAVARRO-ESBRI J , BARRAGAN-CERVERA A , et al . Analysis based on EU regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems[J]. International Journal of Refrigeration, 2015, 52: 21-31. |
8 | 张朝晖, 陈敬良, 高钰, 等 . 制冷空调行业制冷剂替代进程解析[J].制冷与空调, 2015, 15(1): 1-8. |
ZHANG Z H , CHEN J L , GAO Yet al . Process of refrigerant substitution in R&AC industry[J]. Refrigeration and Air-Conditioning, 2015, 15(1): 1-8. | |
9 | WANG X D , AMRANE K . AHRI low global warming potential alternative refrigerants evaluation program (low-GWP AREP)-summary of phase I testing results[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3): 996-1000. |
10 | NAVARRO-ESBRI J , MENDOZA-MIRANDA J M , MOTA-BABILONI A , et al . Experimental analysis of R1234yf as a drop-in replacement for R134a in a vapor compression system[J]. International Journal of Refrigeration, 2013, 36(3): 870-880. |
11 | MOTA-BABILONI A , NAVARRO-ESBRI J , BARRAGAN A , et al . Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements[J]. Applied Thermal Engineering, 2014, 71(1): 259-265. |
12 | SANCHEZ D , CABELLO R , LLOPIS R , et al . Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives[J]. International Journal of Refrigeration, 2016, 74: 269-282. |
13 | BELMAN-FLORES J M , RODRIGUEZ-MUNOZ A P , PEREZ-REGUERA C G , et al . Experimental study of R1234yf as a drop-in replacement for R134a in a domestic refrigerator[J]. International Journal of Refrigeration, 2017, 81: 1-11. |
14 | VAGHELA J K . Comparative evaluation of an automobile air-conditioning system using R134a and its alternative refrigerants [J]. Energy Procedia, 2017, 109: 153-160. |
15 | DAVIRAN S , KASAEIAN A , GOLZARI S , et al . A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems[J]. Applied Thermal Engineering, 2017, 110: 1091-1100. |
16 | DEVECIOĜLU A G , ORUC V . Characteristics of some new generation refrigerants with low GWP[J]. Energy Procedia, 2015, 75: 1452-1457. |
17 | MAKHNATCH P , MOTA-BABILONI A , KHODABANDEH R , et al . Experimental study of R450A drop-in performance in an R134a small capacity refrigeration unit[J]. International Journal of Refrigeration, 2017, 84: 26-35. |
18 | 孟照峰,张华,秦延斌,等 . R1234yf/R134a混合物在汽车空调中替代R134a 的实验研究[J]. 化工学报, 2018, 69(2): 2396-2403. |
MENG Z F , ZHANG H , QIN Y B , et al . Experimental study on R1234yf/R134a mixture as alternative to R134a in automobile air conditioner[J]. CIESC Journal, 2018, 69(2): 2396-2403. | |
19 | MENDOZA-MIRANDA J M , MOTA-BABILONI A , NAVARRO-ESBRI J . Evaluation of R448A and R450A as low-GWP alternatives for R404A and R134a using a micro-fin tube evaporator model[J]. Applied Thermal Engineering, 2016, 98: 330-339. |
20 | SHAPIRO D . Drop-in testing of next-generation R134a alternates in a commercial bottle cooler/freezer[C]// International Refrigeration and Air Conditioning Conference at Purdue, Purdue . 2012. |
21 | MOTA-BABILONI A , MAKHNATCH P , KHODABANDEH R , et al . Experimental assessment of R134a and its lower GWP alternative R513A[J]. International Journal of Refrigeration, 2017, 74: 682-688. |
22 | RIGHETTI G , ZILIO C , LONGO G A . Comparative performance analysis of the low GWP refrigerants HFO1234yf, HFO1234ze(E) and HC600a inside a roll-bond evaporator[J]. International Journal of Refrigeration, 2015, 54: 1-9. |
23 | APREA C , GRECO A , MAIORINO A . An experimental investigation on the substitution of HFC134a with HFO1234yf in a domestic refrigerator[J]. Applied Thermal Engineering, 2016, 106: 959-967. |
24 | APREA C , GRECO A , MAIORINO A . An experimental investigation of the energetic performances of HFO1234yf and its binary mixtures with HFC134a in a household refrigerator[J]. International Journal of Refrigeration, 2017, 76: 109-117. |
25 | 霍二光, 戴源德, 耿平,等 . R1234ze与R152a混合制冷剂替代R22的可行性[J]. 化工学报, 2015, 66(12): 4725-4729. |
HUO E G , DAI Y D , GENG P , et al . Feasibility of using R1234ze and R152a mixture as alternative for R22[J]. CIESC Journal, 2015, 66(12): 4725-4729. |
[1] | CHEN Lei, YAN Xingqing, HU Yanwei, YU Shuai, YANG Kai, CHEN Shaoyun, GUAN Hui, YU Jianliang, MAHGEREFTEH Haroun, MARTYNOV Sergey. Research progress on fracture control of accidental leakage and decompression in CO2 pipeline transportation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241-1255. |
[2] | GU Zhipan, YANG Jichun, ZHANG Ye, TAO Leren, LIU Fanhan. Mathematical modelling of water sorption isotherms and thermodynamic properties of municipal sewage sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 998-1008. |
[3] | Kai ZHANG,Duoduo WU,Qiang LIU,Yue PENG,Zhen YANG,Yuanyuan DUAN. Determination of time of flight of pulse-echo burst for sound speed measurement in high density fluids [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1219-1226. |
[4] | Guangsheng LI,Qiang XIE,Xianglan ZHANG,Haiyong ZHANG. Solubility of phenolic compounds in low temperature coal tar based on molecular simulation [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 137-144. |
[5] | Junyao WANG, Yue ZHANG, Shuai DENG, Jun ZHAO, Taiwei SUN, Kaixiang LI, Yaofeng XU. Role of thermodynamic properties of CO2 mixtures in CCS: data, models and typical applications [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1244-1258. |
[6] | JI Jun, CHEN Yue, ZHANG Xuelai, XU Xiaofeng, LI Yuyang, CHEN Qiyang. Preparation and thermophysical properties of mannitol aqueous solution PCMs for thermal energy storage [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 1111-1117. |
[7] | LI Yuyang, ZHANG Xuelai, XU Xiaofeng, MUNYALO Jotham Muthoka, CHEN Yue, CHEN Qiyang. Preparation and cyclic properties of low temperature phase change materials of n-caprylic acid and myristic acid [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 689-693. |
[8] | ZHAO Yuqing, LÜ Bing. Experimental research on a mixed refrigerant replacing R22 [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2866-2873. |
[9] | JIA Yanping, JIANG Xiuping, ZHANG Lanhe, ZHANG Haifeng, WANG Wei, CHEN Zicheng. Fly ash modified by HCl/H2SO4 and their adsorption capacity [J]. Chemical Industry and Engineering Progress, 2017, 36(06): 2331-2336. |
[10] | FAN Tielin, CHEN Mimi, TAN Xing, ZHAO Fengqing. Preparation and properties of shape-stabilized phase change aggregate from fatty acid and waste autoclaved aerated concrete [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 996-1002. |
[11] | LI Ying, ZHOU Dan, XU Qinqin, YIN Jianzhong. Molecular simulation of supercritical carbon dioxide microemulsion [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 774-782. |
[12] | HAN Zhonghe, PAN Ge, FAN Wei, WANG Zhi. Effect of internal heat exchanger on thermodynamic performance of low temperature organic Rankine cycle and working fluid selection [J]. Chemical Industry and Engineering Progree, 2016, 35(01): 40-47. |
[13] | ZHOU Yumei, ZHOU Baojing, NIE Xuemei, YE Renlong, GONG Xuedong, ZHU Weihua, XIAO Heming. A theoretical study on the microencapsulation of herbicide MCPA with native β-cyclodextrin and its derivatives by a molecular dynamics/quantum mechanics/continuum solvent model approach [J]. Chemical Industry and Engineering Progree, 2015, 34(12): 4185-4190. |
[14] | YU He1,ZHAO Jigang1,HOU Xiaoming1,2,SHEN Benxian1. Thermodynamic analysis on the process of S Zorb reaction adsorption desulfurization [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2843-2847. |
[15] | CEN Wei,XIA Xianzhi,LIU Yuexiang,MAO Bingquan. A differential scanning calorimetry investigation of magnesium chloride-ethanol adduct [J]. Chemical Industry and Engineering Progree, 2014, 33(07): 1803-1807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |