Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 485-494.DOI: 10.16085/j.issn.1000-6613.2018-1378
• Materials science and technology • Previous Articles Next Articles
Xia JIANG1,2(),Wen LI3,Yunlong GUO1,2,Lu WANG1,2,Qun LI1,2,Qingbiao LI1,2,3()
Received:
2018-07-05
Revised:
2018-09-29
Online:
2019-01-05
Published:
2019-01-05
Contact:
Qingbiao LI
姜霞1,2(),李雯3,郭云龙1,2,王璐1,2,李群1,2,李清彪1,2,3()
通讯作者:
李清彪
作者简介:
姜霞(1989—),女,博士研究生,研究方向为工业催化。E-mail:<email>xingyu20080923@126.com</email>。|李清彪,教授,博士生导师,研究方向为工业催化、生物化工和环境工程。E-mail:<email>kelqb@xmu.edu.cn</email>。
基金资助:
CLC Number:
Xia JIANG, Wen LI, Yunlong GUO, Lu WANG, Qun LI, Qingbiao LI. Progress on bio-templated synthesis of metal oxides and their catalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 485-494.
姜霞, 李雯, 郭云龙, 王璐, 李群, 李清彪. 生物模板法制备金属氧化物及其催化应用研究进展[J]. 化工进展, 2019, 38(01): 485-494.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1378
硬模板 | 金属氧化物 | 制备方法 | 应用 |
---|---|---|---|
向日葵花粉[ | CoFe2O4 | LBL+SSG②(WCM) | —① |
油菜花粉[ | PGs@(Ti-Zr)O4 | WCM | 蛋白质检测 |
百合花粉[ | TiO x /C或SiO x /C | WCM | 光催化降解活性艳红X-3B染料 |
A.trifida花粉[ | TiO2 | WCM | 光催化降解罗丹明B染料 |
油菜花粉[ | ZrO2 | WCM | 吸附刚果红染料 |
松花粉[ | MgFe2O4/γ-Fe2O3 | WCM | 刚果红染料和二甲胺四环素药物的废水处理 |
P. pterocarpum花粉[ | SnO2 | WCM | —① |
蒲公英花粉[ | CoFe2O4 | WCM | 盐酸阿霉素药物释放 |
荷花花粉[ | MnO/C | WCM | 锂离子电池 |
荷花花粉[ | WO3 | WCM | NO 传感器 |
棕榈树花粉[ | ZnO | WCM | —① |
向日葵花粉[ | 赤铁矿/α-Fe2O3/Fe3O4 | LBL+SSG②(WCM) | —① |
荷花花粉[ | NiO | WCM | NO2传感器 |
松树花粉[ | ZnAl-LDH/ZnCo2O4 | WCM | 吸附刚果红并光催化降解 |
油菜花粉[ | TiO2 | WCM | 1,3-丁二烯加氢 |
向日葵花粉[ | ZrO2 | WCM | 储氢 |
荷花花粉[ | CeO2 | WCM | 光催化降解亚甲基蓝 |
油菜花粉[ | SnO2 | SSG②(WCM) | 气体传感器 |
油菜花粉[ | α-Fe2O3/C | WCM | 气体传感器 |
向日葵花粉[ | Fe3O4 | LBL+SSG②(WCM) | —① |
花/树的花粉[ | CaCO3/CaHPO4 | WCM | 布洛芬药物释放 |
花粉[ | SO4 2?/M1 x O y -M2 x O y (M为Zr,Mo, Ti, Wo) | WCM | 氯苯的硝化反应 |
蒲公英花粉[ | TiO2(板钛矿) | SSG②(WCM) | 光催化降解甲基蓝染料 |
油菜花粉[ | Cu/TiO2 | SSG②(WCM) | 光催化降解氯四环素 |
蝴蝶翅膀[ | SiO2 | CVD | 以获得光子结构和光催化为主 |
Al2O3/ TiO2 | ALD | ||
Y2O3, TiO2/ SiO2, ZnO, ZrO2/ TiO2/ SnO2/ Fe3O4/ WO3/ Bi2WO6, BiVO4 | WCM | ||
芭蕉叶[ | TiO2 | WCM | 光催化降解亚甲基蓝染料 |
甘蔗叶[ | TiO2 | WCM | 光催化降解罗丹明6G |
枫树叶[ | CeO2 | WCM | 染料废水净化 |
芳樟叶[ | MgO | WCM | 除菌 |
香樟叶[ | N-ZnO | WCM | 光催化降解亚甲基蓝 |
A.vitifoliaBuch.树叶[ | Pt/N-doped TiO2 | SSG②(WCM) | 光催化产氢 |
硬模板 | 金属氧化物 | 制备方法 | 应用 |
---|---|---|---|
向日葵花粉[ | CoFe2O4 | LBL+SSG②(WCM) | —① |
油菜花粉[ | PGs@(Ti-Zr)O4 | WCM | 蛋白质检测 |
百合花粉[ | TiO x /C或SiO x /C | WCM | 光催化降解活性艳红X-3B染料 |
A.trifida花粉[ | TiO2 | WCM | 光催化降解罗丹明B染料 |
油菜花粉[ | ZrO2 | WCM | 吸附刚果红染料 |
松花粉[ | MgFe2O4/γ-Fe2O3 | WCM | 刚果红染料和二甲胺四环素药物的废水处理 |
P. pterocarpum花粉[ | SnO2 | WCM | —① |
蒲公英花粉[ | CoFe2O4 | WCM | 盐酸阿霉素药物释放 |
荷花花粉[ | MnO/C | WCM | 锂离子电池 |
荷花花粉[ | WO3 | WCM | NO 传感器 |
棕榈树花粉[ | ZnO | WCM | —① |
向日葵花粉[ | 赤铁矿/α-Fe2O3/Fe3O4 | LBL+SSG②(WCM) | —① |
荷花花粉[ | NiO | WCM | NO2传感器 |
松树花粉[ | ZnAl-LDH/ZnCo2O4 | WCM | 吸附刚果红并光催化降解 |
油菜花粉[ | TiO2 | WCM | 1,3-丁二烯加氢 |
向日葵花粉[ | ZrO2 | WCM | 储氢 |
荷花花粉[ | CeO2 | WCM | 光催化降解亚甲基蓝 |
油菜花粉[ | SnO2 | SSG②(WCM) | 气体传感器 |
油菜花粉[ | α-Fe2O3/C | WCM | 气体传感器 |
向日葵花粉[ | Fe3O4 | LBL+SSG②(WCM) | —① |
花/树的花粉[ | CaCO3/CaHPO4 | WCM | 布洛芬药物释放 |
花粉[ | SO4 2?/M1 x O y -M2 x O y (M为Zr,Mo, Ti, Wo) | WCM | 氯苯的硝化反应 |
蒲公英花粉[ | TiO2(板钛矿) | SSG②(WCM) | 光催化降解甲基蓝染料 |
油菜花粉[ | Cu/TiO2 | SSG②(WCM) | 光催化降解氯四环素 |
蝴蝶翅膀[ | SiO2 | CVD | 以获得光子结构和光催化为主 |
Al2O3/ TiO2 | ALD | ||
Y2O3, TiO2/ SiO2, ZnO, ZrO2/ TiO2/ SnO2/ Fe3O4/ WO3/ Bi2WO6, BiVO4 | WCM | ||
芭蕉叶[ | TiO2 | WCM | 光催化降解亚甲基蓝染料 |
甘蔗叶[ | TiO2 | WCM | 光催化降解罗丹明6G |
枫树叶[ | CeO2 | WCM | 染料废水净化 |
芳樟叶[ | MgO | WCM | 除菌 |
香樟叶[ | N-ZnO | WCM | 光催化降解亚甲基蓝 |
A.vitifoliaBuch.树叶[ | Pt/N-doped TiO2 | SSG②(WCM) | 光催化产氢 |
软模板 | 材料 | 结构特点 | 应用 |
---|---|---|---|
细菌纤维素[ | ZnO | 花朵状纳米颗粒 | 抗菌剂 |
纸浆[ | TiO2 | 纤维状, 大孔 | 光降解罗丹明B |
淀粉[ | ZnO | 多个小球沉积形成“甜甜圈”状等 | 光催化降解苯酚 |
酵母细胞[ | TiO2 | 椭圆形多级有序介孔结构 | 光降解COD |
笼型去铁蛋白[ | Co3O4 | 小尺寸、窄粒径分布颗粒(粒径5nm±0.7nm) | —① |
无害利斯特菌铁蛋白[ | Co3O4 | 小尺寸纳米颗粒(平均粒径5nm) | —① |
Mms6蛋白[ | Fe3O4 | 球状纳米颗粒 | —① |
氨基酸[ | TiO2 | 10~15nm立方块, 大孔径纳米棒,花球状纳米颗粒 | 光降解亚甲基蓝、布洛芬、萘酚蓝黑、甲基橙 |
天冬氨酸[ | TiO2 | 介孔纳米球 | 葡萄糖脱水制糠醛 |
氨基酸[ | TiO2 | 介孔纳米球 | Li离子、Na离子电池 |
甘氨酸[ | TiO2 | 介孔空心纳米球 | 光致发光 |
软模板 | 材料 | 结构特点 | 应用 |
---|---|---|---|
细菌纤维素[ | ZnO | 花朵状纳米颗粒 | 抗菌剂 |
纸浆[ | TiO2 | 纤维状, 大孔 | 光降解罗丹明B |
淀粉[ | ZnO | 多个小球沉积形成“甜甜圈”状等 | 光催化降解苯酚 |
酵母细胞[ | TiO2 | 椭圆形多级有序介孔结构 | 光降解COD |
笼型去铁蛋白[ | Co3O4 | 小尺寸、窄粒径分布颗粒(粒径5nm±0.7nm) | —① |
无害利斯特菌铁蛋白[ | Co3O4 | 小尺寸纳米颗粒(平均粒径5nm) | —① |
Mms6蛋白[ | Fe3O4 | 球状纳米颗粒 | —① |
氨基酸[ | TiO2 | 10~15nm立方块, 大孔径纳米棒,花球状纳米颗粒 | 光降解亚甲基蓝、布洛芬、萘酚蓝黑、甲基橙 |
天冬氨酸[ | TiO2 | 介孔纳米球 | 葡萄糖脱水制糠醛 |
氨基酸[ | TiO2 | 介孔纳米球 | Li离子、Na离子电池 |
甘氨酸[ | TiO2 | 介孔空心纳米球 | 光致发光 |
1 | WHITE R J , LUQUE R , BUDARIN V L , et al . Supported metal nanoparticles on porous materials. Methods and applications[J]. Chemical Society Reviews, 2009, 38(2): 481-494. |
2 | ZHOU H , FAN T , ZHANG D . Biotemplated materials for sustainable energy and environment: current status and challenges[J]. ChemSusChem, 2011, 4(10): 1344-1387. |
3 | CHEN X , MAO S S . Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959. |
4 | YANG X Y , CHEN L H , LI Y , et al . Hierarchically porous materials: synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
5 | ZAN G , WU Q . Biomimetic and bioinspired synthesis of nanomaterials/nanostructures[J]. Advanced Materials, 2016, 28(11): 2099-2147. |
6 | GOODWIN W B , SHIN D , SABO D , et al . Tunable multimodal adhesion of 3D, nanocrystalline CoFe2O4 pollen replicas[J]. Bioinspiration & Biomimetics, 2017, 12(6): 066009. |
7 | WANG J , LI J , WANG Y , et al . A novel double-component MOAC honeycomb composite with pollen grains as a template for phosphoproteomics research[J]. Talanta, 2016, 154: 141-149. |
8 | QIN L , LIU M , WU Y , et al . Bioinspired hollow and hierarchically porous MO x (M=Ti,Si)/carbon microellipsoids supported with Fe2O3 for heterogenous photochemical oxidation[J]. Applied Catalysis B: Environmental, 2016, 194: 50-60. |
9 | ERDOGAN D A , OZENSOY E . Hierarchical synthesis of corrugated photocatalytic TiO2 microsphere architectures on natural pollen surfaces[J]. Applied Surface Science, 2017, 403: 159-167. |
10 | ZHAO J , GE S , LIU L , et al . Microwave solvothermal fabrication of zirconia hollow microspheres with different morphologies using pollen templates and their dye adsorption removal[J]. Industrial & Engineering Chemistry Research, 2017, 57(1): 231-241. |
11 | LU L , LI J , YU J , et al . A hierarchically porous MgFe2O4/γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water[J]. Chemical Engineering Journal, 2016, 283: 524-534. |
12 | FAZIL A A , BHANU J U , AMUTHA A , et al . A facile bio-replicated synthesis of SnO2 motifs with porous surface by using pollen grains of Peltophorumpterocarpum as a template[J]. Microporous and Mesoporous Materials, 2015, 212: 91-99. |
13 | CAI B , ZHAO M , MA Y, et al . Bioinspired formation of 3D hierarchical CoFe2O4 porous microspheres for magnetic-controlled drug release[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1327-1333. |
14 | ZHU W , HUANG H , ZHANG W , et al . Synthesis of MnO/C omposites derived from pollen template for advanced lithium-ion batteries[J]. Electrochimica Acta, 2015, 152: 286-293. |
15 | WANG X X , TIAN K , LI H Y , et al . Bio-templated fabrication of hierarchically porous WO3 microspheres from lotus pollens for NO gas sensing at low temperatures[J]. RSC Advances, 2015, 5(37): 29428-29432. |
16 | AZIZI S , NAMVAR F , MOHAMAD R , et al . Facile biosynthesis and characterization of palm pollen stabilized ZnO nanoparticles[J]. Materials Letters, 2015, 148: 106-109. |
17 | GOMEZ I J , GOODWIN W B , SABO D , et al . Three-dimensional magnetite replicas of pollen particles with tailorable and predictable multimodal adhesion[J]. Journal of Materials Chemistry C, 2015, 3(3): 632-643. |
18 | TIAN K , WANG X X , LI H Y , et al . Lotus pollen derived 3-dimensional hierarchically porous NiO microspheres for NO2 gas sensing[J]. Sensors and Actuators B: Chemical, 2016, 227: 554-560. |
19 | YU J , LU L , LI J , et al . Biotemplated hierarchical porous-structure of ZnAl-LDH/ZnCo2O4 composites with enhanced adsorption and photocatalytic performance[J]. RSC Advances, 2016, 6(16): 12797-12808. |
20 | JIANG X , LIU Y , HAO H , et al . Rape pollen-templated synthesis of C, N self-doped hierarchical TiO2 for selective hydrogenation of 1,3-butadiene[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(1): 882-888. |
21 | YANG X , SONG X , WEI Y , et al . Synthesis of spinous ZrO2 core-shell microspheres with good hydrogen storage properties by the pollen bio-template route[J]. Scripta Materialia, 2011, 64(12): 1075-1078. |
22 | QIAN J , CHEN Z , LIU C , et al . Improved visible-light-driven photocatalytic activity of CeO2 microspheres obtained by using lotus flower pollen as biotemplate[J]. Materials Science in Semiconductor Processing, 2014, 25: 27-33. |
23 | SONG F , SU H , HAN J , et al . Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties[J]. The Journal of Physical Chemistry C, 2012, 116(18): 10274-10281. |
24 | YANG F , SU H , ZHU Y , et al . Bioinspired synthesis and gas-sensing performance of porous hierarchical α-Fe2O3/C nanocomposites[J]. Scripta Materialia, 2013, 68(11): 873-876. |
25 | BRANDON GOODWIN W , GOMEZ I J , FANG Y , et al . Conversion of pollen particles into three-dimensional ceramic replicas tailored for multimodal adhesion[J]. Chemistry of Materials, 2013, 25(22): 4529-4536. |
26 | HALL S R , BOLGER H , MANN S . Morphosynthesis of complex inorganic forms using pollen grain templates[J]. Chemical Communications, 2003(22): 2784-2785. |
27 | WANGP C , YAO K , ZHU J , et al . Preparation, catalytic performance and theoretical study of porous sulfated binary metal oxides shell (SO4 2−/M1 x O y -M2 x O y ) using pollen grain templates[J]. Catalysis Communications, 2013, 39: 90-95. |
28 | HALL S R , SWINERD V M , NEWBY F N , et al . Fabrication of porous titania(brookite) microparticles with complex morphology by sol-gel replication of pollen grains[J]. Chemistry of Materials, 2006, 18(3): 598-600. |
29 | BU D , ZHUANG H . Synthesis, characterization, and photocatalytic studies of copper-doped TiO2 hollow spheres using rape pollen as a novel biotemplate[J]. Catalysis Communications, 2012, 29: 24-28. |
30 | BU D , ZHUANG H . Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradatingchlorotetracycline[J]. Applied Surface Science, 2013, 265: 677-685. |
31 | GU J , ZHANG W , SU H , et al . Morphology genetic materials templated from natural species[J]. Advanced Materials, 2015, 27(3): 464-478. |
32 | 马欢, 刘伟伟, 朱苏文, 等 . 基于芭蕉叶分级结构的 TiO2材料的制备及其吸附-光催化性能的研究[J]. 化学学报, 2012, 70(22): 2353-2358. |
MA H, LIU W W , ZHU S W , et al . Biotemplatedhierarchical TiO2 derived from banana leaf and its adsorption-photocatalytic performance[J]. Acta Chimica Sinica, 2012, 70(22): 2353-2358. | |
33 | LI X , FAN T , ZHOU H , et al . Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green-leaf biotemplates[J]. Advanced Functional Materials, 2009, 19(1): 45-56. |
34 | 陈丰, 陈志刚, 钱君超, 等 . 以枫叶为模板合成分级多孔氧化铈材料及其催化性能[J]. 无机材料学报, 2012, 27(1): 69-73. |
CHEN F , CHEN Z G , QIAN J C , et al .Hierarchicalporous ceria synthesized by maple leaf templates andits catalytic performance[J]. Journal of Inorganic Materials, 2012, 27(1): 69-73. | |
35 | YANG D , FAN T , ZHANG D , et al . Biotemplated hierarchical porous material: the positively charged leaf[J]. Chemistry: A European Journal, 2013, 19(15): 4742-4747. |
36 | ZHOU H , FAN T , LI X , et al . Biomimetic photocatalyst system derived from the natural prototype in leaves for efficient visible-light-driven catalysis[J]. Journal of Materials Chemistry, 2009, 19(18): 2695-2703. |
37 | ZHOU H , LI X , FAN T , et al . Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis[J]. Advanced Materials, 2010, 22(9): 951-956. |
38 | COOK G , TIMMS P L , GÖLTNER-SPICKERMANN C . Exact replication of biological structures by chemical vapor deposition of silica[J]. Angewandte Chemie: International Edition, 2003, 42(5): 557-559. |
39 | YUAN W , YUAN P , LIU D , et al . In situ hydrothermal synthesis of a novel hierarchically porous TS-1/modified-diatomite composite for methylene blue (MB) removal by the synergistic effect of adsorption and photocatalysis[J]. Journal of Colloid and Interface Science, 2016, 462: 191-199. |
40 | KOCHKINA N E , AGAFONOV A V , VINOGRADOV A V , et al . Photocatalytic activity of biomorphic TiO2 fibers obtained by ultrasound-assisted impregnation of cellulose with titanium polyhydroxocomplexes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5148-5155. |
41 | DHANALAKSHMI A , PALANIMURUGAN A , NATARAJAN B . Enhanced antibacterial effect using carbohydrates biotemplate of ZnO nano thin films[J]. Carbohydrate Polymers, 2017, 168: 191-200. |
42 | CARP O , TIRSOAGA A , JURCA B , et al . Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures[J]. Carbohydrate Polymers, 2015, 115: 285-293. |
43 | BOURY B , PLUMEJEAU S . Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry[J]. Green Chemistry, 2015, 17(1): 72-88. |
44 | HE W , CUI J , YUE Y , et al . High-performance TiO2 from baker's yeast[J]. Journal of Colloid & Interface Science, 2011, 354(1): 109-115. |
45 | TSUKAMOTO R , IWAHORI K , MURAOKA M , et al . Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin[J]. Bulletin of the Chemical Society of Japan, 2005, 78(11): 2075-2081. |
46 | ALLEN M , WILLITS D , YOUNG M , et al . Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from listeria innocua[J]. Inorganic chemistry, 2008, 42(20): 6300-6305. |
47 | KASHYAP S , WOEHL T J , LIU X , et al . Nucleation of iron oxide nanoparticles mediated by mms6 protein in situ [J]. ACS Nano, 2014, 8(9): 9097-9106. |
48 | BAKRE P V , TILVE S G , GHOSH N N . Investigation of amino acids as templates for the sol-gel synthesis of mesoporous nano TiO2 for photocatalysis[J]. Monatshefte für Chemie: Chemical Monthly, 2018, 149(1): 1-8. |
49 | EL-SHEIKH S M , KHEDR T M , AMERHAKKI, et al . Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen[J]. Separation & Purification Technology, 2017, 173: 258-268. |
50 | CHANG Y , LIU X , CAI A , et al . Glycine-assisted synthesis of mesoporous TiO2 nanostructures with improved photocatalytic activity[J]. Ceramics International, 2014, 40(9): 14765-14768. |
51 | TAO Y G , XU Y Q , PAN J , et al . Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis[J]. Materials Science & Engineering B, 2012, 177(18): 1664-1671. |
52 | DE S , DUTTA S , PATRA A K , et al . Self-assembly of mesoporous TiO2nanospheresviaaspartic acid templating pathway and its catalytic application for 5-hydroxymethyl-furfural synthesis[J]. Journal of Materials Chemistry, 2011, 21(43): 17505-17510. |
53 | CHANG Y C , WANG Y X , LEE C Y , et al . Arginine-assisted formation of hierarchical TiO2 microspheres for lithium-ion and sodium-ion battery applications[J]. ChemNanoMat, 2016, 2(12): 1092-1097. |
54 | DING S J , WANG Y M , HONG Z L , et al . Biomolecule‐assisted route to prepare titania mesoporous hollow structures[J]. Chemistry, 2011, 17(41): 11535-11541. |
55 | DING S , HUANG F , MOU X , et al . Mesoporous hollow TiO2 microspheres with enhanced photoluminescence prepared by a smart amino acid template[J]. Journal of Materials Chemistry, 2011, 21(13): 4888-4892. |
56 | MILLE C , TYRODE E C , CORKERY R W . Inorganic chiral 3-D photonic crystals with bicontinuousgyroid structure replicated from butterfly wing scales[J]. Chemical Communications, 2011, 47(35): 9873-9875. |
57 | TAO X , DU J , YANG Y , et al . TiC nanorods derived from cotton fibers: chloride-assisted VLS growth, structure, and mechanical properties[J]. Crystal Growth & Design, 2011, 11(11): 4422-4426. |
58 | FANG Y N , BERRIGAN J D , CAI Y , et al . Syntheses of nanostructured Cu- and Ni-based micro-assemblies with selectable 3-D hierarchical biogenic morphologies[J]. Journal of Materials Chemistry, 2012, 22(4): 1305-1312. |
59 | MEYER K C , COKER E N , BOLINTINEANU D S , et al . Mechanically encoded cellular shapes for synthesis of anisotropic mesoporous particles[J]. Journal of the American Chemical Society, 2014, 136(38): 13138-13141. |
60 | SHIN Y , EXARHOS G J . Conversion of cellulose materials into nanostructured ceramics by biomineralization[J]. Cellulose, 2007, 14(3): 269-279. |
61 | SUZUMOTO Y , OKUDA M , YAMASHITA I . Fabrication of zinc oxide semiconductor nanoparticles in the apoferritin cavity[J]. Crystal Growth & Design, 2012, 12(8): 4130-4134. |
62 | MANN S . Molecular recognition in biomineralization[J]. Nature, 1988, 332(6160): 119-124. |
63 | RAMAKRISHNAN S K , MARTIN M , CLOITRE T , et al . Insights on the facet specific adsorption of amino acids and peptides toward platinum[J]. Journal of Chemical Information and Modeling, 2013, 53(12): 3273-3279. |
64 | SUMEREL J L , YANG W , KISAILUS D , et al . Biocatalytically templated synthesis of titanium dioxide[J]. Chemistry of Materials, 2003, 15(25): 4804-4809. |
65 | JIANG Y , YANG D , ZHANG L , et al . Biomimetic synthesis of titania nanoparticles induced by protamine[J]. Dalton Transactions, 2008 (31): 4165-4171. |
66 | KLEM M T , YOUNG M , DOUGLAS T . Biomimetic synthesis of β-TiO2 inside a viral capsid[J]. Journal of Materials Chemistry, 2008, 18(32): 3821-3823. |
67 | JIANG Y , SUN Q , JIANG Z , et al . The improved stability of enzyme encapsulated in biomimetic titania particles[J]. Materials Science and Engineering C, 2009, 29(1): 328-334. |
68 | SUN Q , JIANG Y , JIANG Z , et al . Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated titania[J]. Industrial & Engineering Chemistry Research, 2009, 48(9): 4210-4215. |
69 | MALLAMPATI R , VALIYAVEETTIL S . Biomimetic metal oxides for the extraction of nanoparticles from water[J]. Nanoscale, 2013, 5(8): 3395-3399. |
70 | NGUYEN T D , DINH C T , DO T O . Tailoring the assembly, interfaces, and porosity of nanostructures toward enhanced catalytic activity[J]. Chemical Communications, 2014, 51(4):624-635. |
71 | KAPLIN I Y , LOKTEVA E S , GOLUBINA E V , et al . Sawdust as an effective biotemplate for the synthesis of Ce0.8Zr0.2O2 and CuO-Ce0.8Zr0.2O2 catalysts for total CO oxidation[J]. RSC Advances, 2017, 7(81): 51359-51372. |
72 | JIANG X , HUANG X , ZENG W , et al . Facile morphology control of 3D porous CeO2 for CO oxidation [J]. RSC Advances, 2018, 8(38): 21658-21663. |
73 | LIU C , SUN H , QIAN J , et al . Biotemplating synthesis and photocatalytic activities of N-doped CeO2 microcapsule tailored by hemerocallis pollen[J]. Advanced Powder Technology, 2017, 28(10): 2741-2746. |
74 | QIAN J , ZHANG W , WANG Y , et al . Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting[J]. Applied Surface Science, 2018, 444: 118-125. |
75 | LIU Y , LV H , HU J , et al . Synthesis and characterization of Bi2WO6 nanoplates using egg white as a biotemplate through sol-gel method[J]. Materials Letters, 2015, 139: 401-404. |
76 | QIAN J , CHEN Z , SUN H , et al . Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9691-9698 |
77 | ZHENG T , TIAN Z , SU B , et al . Facile method to prepare TiO2 hollow fiber materials via replication of cotton fiber [J]. Industrial & Engineering Chemistry Research, 2012, 51(3): 1391-1395. |
78 | KOCHKINA N , AGAFONOV A V , VINOGRADOV A V , et al . Photocatalytic activity of biomorphic TiO2 fibres obtained by ultrasound-assisted impregnation of cellulose with titanium polyhydroxocomplexes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5148-5155. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[14] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |