Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 196-207.DOI: 10.16085/j.issn.1000-6613.2018-1339
• Energy processes and technology • Previous Articles Next Articles
Tinghai WANG1(),Wentao LI1,Xiaoxin CHANG2,Yongsheng XIANG2,Xiaojun BAO1()
Received:
2018-07-01
Revised:
2018-09-22
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xiaojun BAO
通讯作者:
鲍晓军
作者简介:
王廷海(1980—),博士研究生,高级工程师,研究方向为汽油清洁化技术的开发。E-mail:<email>wangth@fzu.edu.cn</email>。|鲍晓军,博士,教授,博士生导师,研究方向为汽油清洁化技术的开发。E-mail:<email>baoxj@fzu.edu.cn</email>。
基金资助:
CLC Number:
Tinghai WANG, Wentao LI, Xiaoxin CHANG, Yongsheng XIANG, Xiaojun BAO. Advances in fluid catalytic cracking naphtha cleaning technology[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 196-207.
王廷海, 李文涛, 常晓昕, 向永生, 鲍晓军. 催化裂化汽油清洁化技术研究开发进展[J]. 化工进展, 2019, 38(01): 196-207.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1339
汽油中各组分 | 美国 | 欧洲 | 中国 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2005 | 2014 | 欧IV | 欧V | 欧VI | 国 IV | 国 V | 国 VIA | 国 VIB | |||
硫化物/mg·kg–1 | ≤30 | ≤10 | ≤50 | ≤10 | ≤10 | ≤50 | ≤10 | ≤10 | ≤10 | ||
烯烃/% | ≤10 | ≤10 | ≤18 | ≤18 | ≤18 | ≤28 | ≤24 | ≤18 | ≤15 | ||
芳烃/% | ≤25 | ≤25 | ≤35 | ≤35 | ≤35 | ≤40 | ≤40 | ≤35 | ≤35 | ||
苯/% | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤0.8 | ≤0.8 |
汽油中各组分 | 美国 | 欧洲 | 中国 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2005 | 2014 | 欧IV | 欧V | 欧VI | 国 IV | 国 V | 国 VIA | 国 VIB | |||
硫化物/mg·kg–1 | ≤30 | ≤10 | ≤50 | ≤10 | ≤10 | ≤50 | ≤10 | ≤10 | ≤10 | ||
烯烃/% | ≤10 | ≤10 | ≤18 | ≤18 | ≤18 | ≤28 | ≤24 | ≤18 | ≤15 | ||
芳烃/% | ≤25 | ≤25 | ≤35 | ≤35 | ≤35 | ≤40 | ≤40 | ≤35 | ≤35 | ||
苯/% | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤0.8 | ≤0.8 |
硫化物名称 | 硫化物含量/mg·kg–1 | 占总噻吩比例/% |
---|---|---|
噻吩 | 69.2 | 6.3 |
2-甲基噻吩 | 109.8 | 10.0 |
3-甲基噻吩 | 152.6 | 13.8 |
二甲基噻吩 | 389.8 | 35.4 |
未知噻吩 | 43.9 | 4.0 |
异丙基噻吩 | 26.4 | 2.4 |
甲基,乙基噻吩 | 46.1 | 4.2 |
未知噻吩 | 17.6 | 1.6 |
三甲基噻吩 | 91.1 | 8.3 |
碳四烷基取代噻吩 | 116.4 | 10.5 |
未知噻吩 | 23.0 | 2.1 |
硫化物名称 | 硫化物含量/mg·kg–1 | 占总噻吩比例/% |
---|---|---|
噻吩 | 69.2 | 6.3 |
2-甲基噻吩 | 109.8 | 10.0 |
3-甲基噻吩 | 152.6 | 13.8 |
二甲基噻吩 | 389.8 | 35.4 |
未知噻吩 | 43.9 | 4.0 |
异丙基噻吩 | 26.4 | 2.4 |
甲基,乙基噻吩 | 46.1 | 4.2 |
未知噻吩 | 17.6 | 1.6 |
三甲基噻吩 | 91.1 | 8.3 |
碳四烷基取代噻吩 | 116.4 | 10.5 |
未知噻吩 | 23.0 | 2.1 |
窄馏分 | 硫化物含量/mg·kg–1 | ||||
---|---|---|---|---|---|
噻吩类 | 硫醇类 | 硫醚类 | 硫化氢 | 总硫 | |
初馏点~50℃ | 94.7 | 167.5 | 13.0 | 1.0 | 275.2 |
50℃~干点 | 243.8 | 152.6 | 9.7 | 1.2 | 406.6 |
初馏点–120℃ | 678.3 | 20.5 | 100.3 | 0.4 | 799.5 |
120~148℃ | 843.5 | 9.7 | 155.5 | — | 1008.7 |
140~160℃ | 1239.9 | 35.3 | 168.1 | — | 1443.3 |
160~180℃ | 1284.3 | 32.4 | 133.5 | — | 1450.2 |
180℃~干点 | 1348.7 | 35.3 | 81.5 | — | 1465.5 |
窄馏分 | 硫化物含量/mg·kg–1 | ||||
---|---|---|---|---|---|
噻吩类 | 硫醇类 | 硫醚类 | 硫化氢 | 总硫 | |
初馏点~50℃ | 94.7 | 167.5 | 13.0 | 1.0 | 275.2 |
50℃~干点 | 243.8 | 152.6 | 9.7 | 1.2 | 406.6 |
初馏点–120℃ | 678.3 | 20.5 | 100.3 | 0.4 | 799.5 |
120~148℃ | 843.5 | 9.7 | 155.5 | — | 1008.7 |
140~160℃ | 1239.9 | 35.3 | 168.1 | — | 1443.3 |
160~180℃ | 1284.3 | 32.4 | 133.5 | — | 1450.2 |
180℃~干点 | 1348.7 | 35.3 | 81.5 | — | 1465.5 |
类别 | 辛烷值特征 |
---|---|
烷烃 | 支链程度相同,主链越长(即分子量越大)的烷烃辛烷值越低; 分子量相同,分子结构越紧凑(支链程度越高)的烷烃辛烷值越高 |
烯烃 | 烯烃类型相同时,主链越长(即分子量越大)的烯烃辛烷值越低; 辛烷值取决于未被双键隔断的最长碳链,双键越接近分子中心的烯烃的辛烷值越高; 分子量相同时,分子结构越紧凑 (支链程度越高)的烯烃辛烷值越高 |
环烷烃 | 五元环烷烃的辛烷值高于六元环烷烃的辛烷值; 辛烷值随侧链碳原子数的增加而降低, 随侧链的增多而显著增加; 两个侧链连于环上同一碳原子时, 辛烷值最高; 环烷烃的辛烷值高于相同碳原子数的正构烷烃的辛烷值, 低于异构烷烃和芳香烃的辛烷值 |
芳烃 | 侧链对辛烷值的影响与带相同侧链的环烷烃有相同的变化规律; 在碳原子数相同的各种烃类中辛烷值最高 |
类别 | 辛烷值特征 |
---|---|
烷烃 | 支链程度相同,主链越长(即分子量越大)的烷烃辛烷值越低; 分子量相同,分子结构越紧凑(支链程度越高)的烷烃辛烷值越高 |
烯烃 | 烯烃类型相同时,主链越长(即分子量越大)的烯烃辛烷值越低; 辛烷值取决于未被双键隔断的最长碳链,双键越接近分子中心的烯烃的辛烷值越高; 分子量相同时,分子结构越紧凑 (支链程度越高)的烯烃辛烷值越高 |
环烷烃 | 五元环烷烃的辛烷值高于六元环烷烃的辛烷值; 辛烷值随侧链碳原子数的增加而降低, 随侧链的增多而显著增加; 两个侧链连于环上同一碳原子时, 辛烷值最高; 环烷烃的辛烷值高于相同碳原子数的正构烷烃的辛烷值, 低于异构烷烃和芳香烃的辛烷值 |
芳烃 | 侧链对辛烷值的影响与带相同侧链的环烷烃有相同的变化规律; 在碳原子数相同的各种烃类中辛烷值最高 |
项目 | 硫含量 /μg·g-1 | 烯烃质量 分数/% | 芳烃质量分数/% | 抗爆指数 | 干点 /℃ | 密度 /g·mL–1 |
---|---|---|---|---|---|---|
原料 | 233.0 | 31.14 | 21.30 | 84.50 | 198.0 | 719.5 |
产品 | 5.6 | 26.88 | 21.77 | 83.95 | 200.5 | 718.0 |
项目 | 硫含量 /μg·g-1 | 烯烃质量 分数/% | 芳烃质量分数/% | 抗爆指数 | 干点 /℃ | 密度 /g·mL–1 |
---|---|---|---|---|---|---|
原料 | 233.0 | 31.14 | 21.30 | 84.50 | 198.0 | 719.5 |
产品 | 5.6 | 26.88 | 21.77 | 83.95 | 200.5 | 718.0 |
1 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 .车用汽油: GB 17930—2016[S]. 北京: 中国标准出版社, 2016. |
AQSIQ, SAC . Gasoline for motor vehicles: GB 17930—2016[S]. Beijing: Standards Press of China, 2016. | |
2 | KAUFMANN T G , KALDOR A , STUNTZ G F , et al .Catalysis science and technology for cleaner transportation fuels[J].Catalysis Today, 2000, 62(1): 77-90. |
3 | SONG C .An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J].Catalysis Today, 2003, 86(1): 211-263. |
4 | BRUNET S , MEY D , PÉROT G , et al .On the hydrodesulfurization of FCC gasoline: a review[J].Applied Catalysis A: General, 2008, 278(2): 143-172. |
5 | HATANAKA S , YAMADA M .Hydrodesulfurization of catalytic cracked gasoline. 2. The difference between HDS active site and olefin hydrogenation active site[J].Industrial & Engineering Chemistry Research, 1997, 36(12): 263-266. |
6 | CHENG W C , KIM G , PETERS A W , et al .Environmental fluid catalytic cracking technology[J].Catalysis Reviews, 1998, 40(1/2): 39-79. |
7 | YIN C , ZHU G , XIA D . Determination of organic sulfur compounds in naphtha. Part I.Identification and quantitative analysis of sulfides in FCC and RFCC naphthas[J].Bulletin Geodesique, 2002, 21(1): 19-22. |
8 | 黄长荣 .FCC汽油、柴油中含硫化合物形态和分布的分析方法研究[D].济南: 山东大学, 2001. |
HUANG Changrong .The analysis method of sulfur componds in FCC gasoline and desiel[D]. Jinan: Shandong University, 2001. | |
9 | WANG L , SHI G , XU J , et al .Simple model for predicting the cutting temperature between light and heavy fractions in fluid catalytic cracking naphtha selective hydrodesulfurization processes[J]. Energy & Fuels, 2014, 28(12): 7411-7417. |
10 | HATANAKA S , YAMADA M .Hydrodesulfurization of catalytic cracked gasoline. 3. Selective catalytic cracked gasoline hydrodesulfurization on the Co−Mo/γ-Al2O3 catalyst modified by coking pretreatment[J]. Industrial & Engineering Chemistry Research, 1998, 37(5): 1748-1754. |
11 | TOBA M , MIKI Y , MATSUI T . Reactivity of olefins in the hydrodesulfurization of FCC gasoline over CoMo sulfide catalyst[J]. Applied Catalysis B: Environmental, 2007, 70(1): 542-547. |
12 | NADEINA K A , PEREIMA V Y , KLIMOV O V , et al . Catalyst for selective hydrotreating of catalytic cracking gasoline without preliminary fractionation[J]. Catalysis in Industry, 2017, 9(3): 230-238. |
13 | MORALES-VALENCIA E M , BALDOVINO-MEDRANO V G , GIRALDO S A . Reactivity of olefins and inhibition effect on the hydrodesulfurization of a model FCC naphtha[J]. Fuel, 2015, 153: 294-302. |
14 | 王廷海, 钱颖, 郑云弟, 等 . 一种含无定型硅铝的拟薄水铝石及其制备方法: CN201010106266.6 [P]. 2010. |
WANG Tinghai , QIAN Ying , ZHENG Yundi , et al . A pseudoboehmite containing amorphous silica-alumina and its preparation method: CN2010106266.6[P]. 2010. | |
15 | NADEINA K A , PEREIMA V Y , KLIMOV O V , et al . Catalyst for selective hydrotreating of catalytic cracking gasoline without preliminary fractionation[J]. Catalysis in Industry, 2017, 9(3): 230-238. |
16 | 王宁, 温浩, 李晓霞, 等 . 汽油燃料的化学组成和结构与抗爆性能关系的研究[J]. 石油炼制与化工, 1996, 27(2): 41-46. |
WANG Ning , WEN Hao , LI Xiaoxia , et al . Relationship between hydrocarbon composition structure and anti-knock property of gasoline[J]. Petroleum Processing and Petrochemicals, 1997, 27(2): 41-46. | |
17 | GOLDEN S W , HANSON D W , FULTON S A . Use better fractionation to manage gasoline sulfur concentration[J]. Hydrocarbon Processing, 2002, 81(2): 67-72. |
18 | 钱伯章 . 卢克石油公司设置第200套Prime-G+汽油脱硫装置[J]. 石油炼制与化工, 2012, 81(8): 1. |
QIAN Bozhang . The 200 sets of Prime-G+ for gasoline hydrodesulfurization in Luke petroleum company[J]. Petroleum Processing and Petrochemicals , 2012, 81(8): 1. | |
19 | 赵德强, 董海明 . 催化汽油加氢脱硫装置国V改造开工总结[J]. 石油与天然气化工, 2017, 46(6): 24-30. |
ZHAO Deqiang , DONG Haiming . Start-up summarization of FCC gasoline hydrodesulfurization unit transformation according to national standard of grade V gasoline[J]. Chemical Engineering of Oil & Gas, 2017, 46(6): 24-30. | |
20 | 张星, 龙钰, 孙方宪, 等 . 催化裂化汽油质量升级方案选择[J]. 当代化工, 2010, 39(2): 158-161. |
ZHANG Xing , LONG Yu , SUN Fangxian , et al . Process scheme selection of qualitiy upgrading of catalytic cracking gasoline[J]. Contemperary Chemical Industry, 2010, 39(2): 158-161. | |
21 | 张星, 孙方宪, 尹恩杰, 等 . CDHydro/CDHDS FCC汽油选择性加氢脱硫工艺设计[J]. 炼油技术与工程, 2010, 40(1): 6-9. |
ZHANG Xing , SUN Fangxian , YIN Enjie , et al . Process design of CDHydro/CDHDS for selective hydrodesulfurization of FCC naphtha[J]. Petroleum Refinery Engineering, 2010, 40 (1): 6-9. | |
22 | SHI H S , OWENS P , PALIT S , et al . Mobil’s OCTGAIN process: FCC gasoline desulfurization reaches a new performance level[C]//NPRA: NPRA Annual Meeting, 1999: AM-99-30. |
23 | 宋爱萍 . 提高汽油质量的工艺技术进展[J]. 石油规划设计, 2001, 12(6): 10-12. |
SONG Aiping . The research progress of improving gasoline quality[J]. Petroleum Planning & Engineering, 2001, 12(6): 10-12. | |
24 | 靳凤英 . 催化裂化(FCC)汽油选择性加氢脱硫催化剂研究[D]. 大连: 大连理工大学, 2016. |
JIN Fengying . The studing of catalyst used in catalytic cracking(FCC) gasoline selective hydrodesulfurization [D]. Dalian: Dalian University of Technoloty, 2016. | |
25 | 石冈, 范煜, 鲍晓军, 等 . 催化裂化汽油加氢改质GARDES技术的开发及工业试验[J]. 石油炼制与化工, 2013, 44(9): 66-72. |
SHI Gang , FAN Yu , BAO Xiaojun , et al . Development and application of GARDES technolgy for fluid catalytic cracking gasoline upgrading[J]. Petroleum Processing and Petrochemicals, 2013, 44(9): 66-72. | |
26 | 向永生, 黄金刚, 石冈, 等 . GARDES工艺在FCC汽油加氢装置的工业应用[J]. 工业催化, 2015, 23(2): 131-135. |
XIANG Yongsheng , HUANG Jingang , SHI Gang , et al . Commercial application of GARDES process in FCC gasoline hydrogenation unit [J]. Industrial Catalysis, 2015, 23(2): 131-135. | |
27 | 杨黎峰, 刘昕 . GARDES技术催化汽油加氢装置性能评价[J]. 炼油与化工, 2017, 28(6): 10-12. |
YANG Lifeng , LIU Xin . Performance evaluation of catalytic gasoline hydrogenation unit of GARDES technology[J]. Refining and Chemical Industry, 2017, 28(6): 10-12. | |
28 | 曲志海, 秦玉华, 常晓昕, 等 . GARDES工艺在30万t/a汽油加氢装置上的应用[J]. 石化技术与应用, 2017, 35(5): 367-370. |
QU Zhihai , QIN Yuhua , CHANG Xiaoxin , et al . Commercial application of GARDES process in a 0.3 Mt /a gasoline hydrogenation unit[J]. Petrochemical Technology and Application, 2017, 35(5): 367-370. | |
29 | HUANG L , WANG G , QIN Z , et al . A sulfur K-edge XANES study on the transfer of sulfur species in the reactive adsorption desulfurization of diesel oil over Ni/ZnO[J]. Catalysis Communications, 2010, 11(7): 592-596. |
30 | TAWARA K , NISHIMURA T , IWANAMI H . Ultra-deep hydrodesulfurization of kerosene for fuel cell system. (part 2): Regeneration of sulfur-poisoned nickel catalyst in hydrogen and finding of auto-regenerative nickel catalyst[J]. Sekiyu Gakkaishi, 2000, 43(2): 114-120. |
31 | 刘传勤 . 齐鲁900kt/a汽油吸附脱硫装置开工及运行总结[J]. 齐鲁石油化工, 2010, 38(4): 276-280. |
LIU Chuanqin . Summary on initial start and running of QiLu 900kt/a S-Zorb device[J]. Qilu Petrochemical, 2010, 38(4): 276-280. | |
32 | 燕山石化催化吸附脱硫装置通过验收[J]. 气体净化, 2010, 10(1): 22. |
The check and accept of catalytic adsorbed unit about Yanshan refinery[J]. Gas Purification, 2010, 10(1): 22. | |
33 | 王明哲, 阮宇军 . 催化裂化汽油吸附脱硫反应工艺条件的探讨[J]. 炼油技术与工程, 2010, 40(9): 5-9. |
WANG Mingzhe , YUAN Yujun . Study on process conditions of adsorption desulfurization reaction of FCC gasoline [J]. Petroleum Refinery Engineering, 2010, 40(9): 5-9. | |
34 | 孙启明, 张遥, 赵明洋 . S-Zorb国产吸附剂在高桥催化裂化汽油脱硫装置上的应用[J]. 炼油技术与工程, 2013, 43(1): 15-18. |
ZHANG Qiming , ZHANG Yao , ZHAO Mingyang . Application of domestic S-Zorb absorbent in commercial FCC gasoline desulfurization unit[J]. Petroleum Refinery Engineering, 2013, 43(1): 15-18. | |
35 | TAWARA K , NISHIMURA T , IWANAMI H , et al . New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations[J]. Industrial & Engineering Chemistry Research, 2001, 40(10): 2367-2370. |
36 | 郝天臻, 李艳珍, 胡同雨, 等 . 催化汽油抽提加氢组合脱硫工艺[J]. 石化技术, 2016(1): 21-23. |
HAO Tianzhen , LI Yanzhen , HU Tongyu , et al . Process of FCC gasoline extraction and hydrogenation group desulfurization[J]. Petrochemical Industry Technology, 2016(1): 21-23. | |
37 | STANISLAUS A , MARAFI A , RANA M S . Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production[J]. Catalysis Today, 2010, 153(1): 1-68. |
38 | PRINS R . Catalytic hydrodenitrogenation[J]. Advances in Catalysis, 2001, 46(2): 399-464. |
39 | VOORHOEVE R J H , STUIVER J C M . The mechanism of the hydrogenation of cyclohexene and benzene on nickel-tungsten sulfide catalysts[J]. Journal of Catalysis, 1971, 23(2): 243-252. |
40 | TOPSØE H , CLAUSEN B S , CANDIA R , et al . In situ mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase[J]. Journal of Catalysis, 1981, 68(2): 433-452. |
41 | TOPSØE H , CLAUSEN B S . Importance of Co-Mo-S type structures in hydrodesulfurization[J]. Catalysis Reviews, 1984, 26(3-4): 395-420. |
42 | BOUWENS S M A M , VANZON F B M , VANDIJK M P , et al . On the structural differences between alumina-supported CoMoStype I and alumina-, silica-, and carbon-supported CoMoS type II phases studied by XAFS, MES, and XPS[J]. Journal of Catalysis, 1994, 146(2): 375-393. |
43 | LOUWERS S P A , PRINS R . Ni EXAFS studies of the Ni-Mo-S structure in carbon-supported and alumina-supported Ni-Mo catalysts[J]. Journal of Catalysis, 1992, 133(1): 94-111. |
44 | LOUWERS S P A , PRINS R . An EXAFS Study on the Ni and W environment in carbon-supported, sulfided W and Ni-W catalysts[J]. Journal of Catalysis, 1993, 139(2): 525-539. |
45 | USMAN, KUBOTA T , HIROMITSU I , et al . Effect of boron addition on the surface structure of Co-Mo/Al2O3 catalysts[J]. Journal of Catalysis, 2007, 247(1): 78-85. |
46 | USMAN, YAMAMOTO T , KUBOTA T , et al . Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene[J]. Applied Catalysis A: General, 2007, 328(2): 219-225. |
47 | RINALDI N , USMAN, DALAMA K , et al . Preparation of Co–Mo/B2O3/Al2O3 catalysts for hydrodesulfurization: effect of citric acid addition[J]. Applied Catalysis A: General, 2009, 360(2): 130-136. |
48 | NICOSIA D , PRINS R . The effect of phosphate and glycol on the sulfidation mechanism of CoMo/Al2O3 hydrotreating catalysts: an in situ QEXAFS study[J]. Journal of Catalysis, 2005, 231(2): 259-268. |
49 | MEDICI L , PRINS R . The influence of chelating ligands on the sulfidation of Ni and Mo in NiMo/SiO2 hydrotreating catalysts[J]. Journal of Catalysis, 1996, 163(1): 38-49. |
50 | BREYSSE M , GEANTET C , AFANASIEV P , et al . Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts[J]. Catalysis Today, 2008, 130(1): 3-13. |
51 | DAAGE M , CHIANELLI R R . Structure-function relations in molybdenum sulfide catalysts: the "Rim-Edge" model[J]. Journal of Catalysis, 1994, 149(2): 414-427. |
52 | FAN Y , SHI G , LIU H , et al . Morphology tuning of supported MoS2 slabs for selectivity enhancement of fluid catalytic cracking gasoline hydrodesulfurization catalysts[J]. Applied Catalysis B: Environmental, 2009, 91(1-2): 73-82. |
53 | LI P , CHEN Y , ZHANG C , et al . Highly selective hydrodesulfurization of gasoline on unsupported Co-Mo sulfide catalysts: effect of MoS2 morphology[J]. Applied Catalysis A: General, 2017, 533: 99-108. |
54 | NGUYEN T S , LORIDANT S , CHANTAL L , et al . Effect of glycol on the formation of active species and sulfidation mechanism of CoMoP/Al2O3 hydrotreating catalysts[J]. Applied Catalysis B: Environmental, 2011, 107(1-2): 59-67. |
55 | ASUA J M , DELMON B . Separation of the kinetic terms in catalytic reactions with varying number of active sites (case of the remote control model)[J]. Applied Catalysis, 1984, 12(2): 249-262. |
56 | PORTELA L , GRANGE P , DELMON B . XPS and NO adsorption studies on alumina-supported Co-Mo catalysts sulfided by different procedures[J]. Journal of Catalysis, 1995, 156(2): 243-254. |
57 | GRANGE P , VANHAEREN X . Hydrotreating catalysts, an old story with new challenges[J]. Catalysis Today, 1997, 36(4): 375-391. |
58 | KARROUA M , CENTENO A , MATRALIS H K , et al . Synergy in hydrodesulphurization and hydrogenation on mechanical mixtures of cobalt sulphide on carbon and MoS2 on alumina[J]. Applied Catalysis, 1989, 51(1): L21-L26. |
59 | KARROUA M , GRANGE P , DELMON B . Existence of synergy between “CoMoS” and Co9S8: new proof of remote control in hydrodesulfurization[J]. Applied Catalysis, 1989, 50(1): L5-L10. |
60 | ESCALONA N , GARCIA R , LAGOS G , et al . Effect of the hydrogen spillover on the selectivity of dibenzothiophene hydrodesulfurization over CoS x /γ-Al2O3, NiS x /γ-Al2O3 and MoS2/γ-Al2O3 catalysts[J]. Catalysis Communications, 2006, 7(12): 1053-1056. |
61 | OJEDA J , ESCALONA N , BAEZA P , et al . Synergy between Mo/SiO2 and Co/SiO2 beds in HDS: a remote control effect[J]. Chemical Communications, 2003, 9(13): 1608-1609. |
62 | FLEGO C , O'NEIL PARKER JR W . Characterization of γ-alumina and borated alumina catalysts[J]. Applied Catalysis A: General, 1999, 185(1): 137-152. |
63 | TROMBETTA M , BUSCA G , ROSSINI S , et al . FT-IR studies on light olefin skeletal isomerization catalysis: Ⅲ. Surface acidity and activity of amorphous and crystalline catalysts belonging to the SiO2-Al2O3 system[J]. Journal of Catalysis, 1998, 179(2): 581-596. |
64 | WIYANTOKO B , KURNIAWATI P , PURBANINGTIAS T E , et al . Synthesis and characterization of hydrotalcite at different Mg/Al molar ratios[J]. Procedia Chemistry, 2015, 17: 21-26. |
65 | ARIAS S , LICEA Y E , PALACIO L A , et al . Unsupported NiMoAl hydrotreating catalysts prepared from NiAl-terephthalate hydrotalcites exchanged with heptamolybdate[J]. Catalysis Today, 2013, 213: 198-205. |
66 | MOKHTAR M , SALEH T S , BASAHEL S N . Mg-Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: a green protocol[J]. Journal of Molecular Catalysis A: Chemical, 2012, 353-354: 122-131. |
67 | ESCOBAR-ALARCON L , KLIMOVA T , ESCOBAR-AGUILAR J , et al . Preparation and characterization of Al2O3-MgO catalytic supports modified with lithium[J]. Fuel, 2013, 110: 278-285. |
68 | GUEVARA-LARA A , CRUZ-PERÈZ A E , Contreras-Valdez Z , et al . Effect of Ni promoter in the oxide precursors of MoS2/MgO-Al2O3 catalysts tested in dibenzothiophene hydrodesulphurization[J]. Catalysis Today, 2010, 149(3-4): 288-294. |
69 | BADAWI M , VIVIER L , PÉROT G , et al . Promoting effect of cobalt and nickel on the activity of hydrotreating catalysts in hydrogenation and isomerization of olefins[J]. Journal of Molecular Catalysis A:Chemical, 2008, 293(1): 53-58. |
70 | HILLEROVÁ E , VÍT Z , ZDRAŽIL M . Magnesia supported Ni-Mo sulfide hydrodesulfurization and hydrodenitrogenation catalysts prepared by non-aqueous impregnation[J]. Applied Catalysis A: General, 1994, 118(7): 111-125. |
71 | YIN G Z , XIA D . Determination of organic sulfur compounds in naphtha. Part Ⅱ. Identification and quantitative analysis of thiophenes in FCC and RFCC naphthas[J]. Am. Chem. Soc. Prepr. Div. Pet. Chem. , 2002, 47(1): 63. |
72 | WU Q , LI Y , HOU Z , et al . Synthesis and characterization of Beta-FDU-12 and the hydrodesulfurization performance of FCC gasoline and diesel[J]. Fuel Processing Technology, 2018, 172: 55-64. |
73 | MEY D , BRUNET S , CANAFF C , et al . HDS of a model FCC gasoline over a sulfided CoMo/Al2O3 catalyst: effect of the addition of potassium[J]. Journal of Catalysis, 2004, 227(2): 436-447. |
74 | OKAMOTO Y , OCHIAI K , KAWANO M , et al . Effects of support on the activity of Co-Mo sulfide model catalysts[J]. Applied Catalysis A: General, 2002, 226(1): 115-127. |
75 | NIKULSHIN P , ISHUTENKO D , ANASHKIN Y , et al . Selective hydrotreating of FCC gasoline over KCoMoP/Al2O3 catalysts prepared with H3PMo12O40: effect of metal loading[J]. Fuel, 2016, 182: 632-639. |
76 | VILLARROEL M , BAEZA P , GRACIA F , et al . Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts[J]. Applied Catalysis A: General, 2009, 364(1): 75-79. |
77 | NIKULSHIN P A , MOZHAEV A V , MASLAKOV K I , et al . Genesis of HDT catalysts prepared with the use of Co2Mo10 HPA and cobalt citrate: study of their gas and liquid phase sulfidation[J]. Applied Catalysis B: Environmental, 2014, 158-159(1): 161-174. |
78 | CATTANEO R , ROTA F , PRINS R . An XAFS study of the different influence of chelating ligands on the HDN and HDS of γ-Al2O3-supported NiMo catalysts[J]. Journal of Catalysis, 2001, 199(2): 318-327. |
79 | MEDICI L , PRINS R . The influence of chelating ligands on the sulfidation of Ni and Mo in NiMo/SiO2 hydrotreating catalysts[J]. Journal of Catalysis, 1996, 163(1): 38-49. |
80 | DILLEN A J V , TERÖRDE R J A M , LENSVELD D J , et al . Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes[J]. Journal of Catalysis, 2003, 216(1): 257-264. |
81 | HAANDEL L V , BREMMER G M , HENSEN E J M , et al . The effect of organic additives and phosphoric acid on sulfidation and activity of (Co)Mo/Al2O3 hydrodesulfurization catalysts[J]. Journal of Catalysis, 2017, 351: 95-106. |
82 | COULIER L , BEER V H J D , VEEN J A R V , et al . Correlation between hydrodesulfurization activity and order of Ni and Mo sulfidation in planar silica-supported NiMo catalysts: the influence of chelating agents[J]. Journal of Catalysis, 2001, 197(1): 26-33. |
83 | FUJIKAWA T . Highly active HDS catalyst for producing ultra-low sulfur diesel fuels[J]. Topics in Catalysis, 2009, 52(6-7): 872-879. |
84 | CASTILLO-VILLALÓN P , RAMIREZ J , VARGAS-LUCIANO J A . Analysis of the role of citric acid in the preparation of highly active HDS catalysts[J]. Journal of Catalysis, 2014, 320(1): 127-136. |
85 | NIKULSHIN P A , MOZHAEV A V , MASLAKOV K I , et al . Genesis of HDT catalysts prepared with the use of Co2Mo10HPA and cobalt citrate: study of their gas and liquid phase sulfidation[J]. Applied Catalysis B: Environmental, 2014, 158-159: 161-174. |
86 | GUICHARD B , ROY-AUBERGER M , DEVERS E , et al . Influence of the promoter's nature (nickel or cobalt) on the active phases Ni(Co)MoS modifications during deactivation in HDS of diesel fuel[J]. Catalysis Today, 2010, 149(1): 2-10. |
87 | CHEN J , MAUGÉ F , FALLAH J E , et al . IR spectroscopy evidence of MoS2 morphology change by citric acid addition on MoS2 /Al2O3 catalysts-a step forward to differentiate the reactivity of M-edge and S-edge[J]. Journal of Catalysis, 2014, 320(1): 170-179. |
88 | SHAN S , YUAN P , HAN W , et al . Supported NiW catalysts with tunable size and morphology of active phases for highly selective hydrodesulfurization of fluid catalytic cracking naphtha[J]. Journal of Catalysis, 2015, 330:288-301. |
89 | SHAN S , LIU H , YUE Y , et al . Trimetallic WMoNi diesel ultra-deep hydrodesulfurization catalysts with enhanced synergism prepared from inorganic-organic hybrid nanocrystals[J]. Journal of Catalysis, 2016, 344: 325-333. |
90 | HAN W , YUAN P , FAN Y , et al . Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor[J]. Journal of Materials Chemistry, 2012, 22(48): 25340-25353. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[9] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |