Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (11): 4121-4134.DOI: 10.16085/j.issn.1000-6613.2018-0290
Previous Articles Next Articles
WEI Chaohai1, RU Xuan1, YANG Xingzhou1, FENG Chunhua1, WEI Yongfen2, LI Fusheng2
Received:
2018-02-01
Revised:
2018-05-07
Online:
2018-11-05
Published:
2018-11-05
韦朝海1, 汝旋1, 杨兴舟1, 冯春华1, 魏永芬2, 李富生2
通讯作者:
韦朝海(1962-),男,教授,博士生导师,研究方向为水污染控制理论与技术。E-mail:cechwei@scut.edu.cn。
作者简介:
韦朝海(1962-),男,教授,博士生导师,研究方向为水污染控制理论与技术。E-mail:cechwei@scut.edu.cn。
基金资助:
CLC Number:
WEI Chaohai, RU Xuan, YANG Xingzhou, FENG Chunhua, WEI Yongfen, LI Fusheng. Energy saving strategy based on oxygen control in wastewater bio-treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4121-4134.
韦朝海, 汝旋, 杨兴舟, 冯春华, 魏永芬, 李富生. 污水生物处理基于氧调控的节能策略[J]. 化工进展, 2018, 37(11): 4121-4134.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0290
[1] PECCIA J, WESTERHOFF P. We should expect more out of our sewage sludge[J]. Environmental Science & Technology, 2015, 49(14):8271-8276. [2] TALAIEKHOZANI A, BAGHERI M, GOLI A, et al. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems[J]. Journal of Environmental Management, 2016, 170:186-206. [3] ALLEMAN J E, PRAKASAM T B S. Reflections on seven decades of AS history[J]. Water Pollution Control Federation, 1985, 55(5):436-443. [4] HENZE M, VAN LOOSDTECHT M C M, EKAMA G A, 等. 污水生物处理——原理、设计与模拟[M]. 施汉昌, 胡志荣, 周军, 等译. 北京:中国建筑工业出版社, 2011:1-5. HENZE M, VAN LOOSDTECHT M C M, EKAMA G A, et al. Biological wastewater treatment:principles, modelling and design[M]. SHI H C, HU Z R, ZHOU J, et al. trans. Beijing:China Architecture & Building Press, 2011:1-5. [5] 邓荣森. 氧化沟污水处理理论与技术[M]. 北京:化学工业出版社, 2006:221. DENG R S. Oxidation ditch sewage treatment theory and technology[M]. Beijing:Chemical Industry Press, 2006:221. [6] 郭频. AB法污水处理工艺功能升级试验研究[D]. 哈尔滨:哈尔滨工业大学, 2010. GUO P. Study on functional modification test of A-B wastewater treatment process[D]. Harbin:Harbin Institute of Technology, 2010. [7] ECKENFELDER JR W W. Industrial water pollution control (Photocopied Edition)[M]. 3rd ed. Beijing:Tsinghua University Press, 2012. [8] 荣杨. 基于CASS工艺的污水处理厂能耗分析与评价模型研究[D]. 成都:西华大学, 2016. RONG Y. The research of energy consumption analysis and evaluation model for sewage treatment plant based on CASS process[D]. Chengdu:Xihua University, 2016. [9] 汪慧贞, 吴俊奇. 活性污泥数学模型的发展和使用[J]. 中国给水排水, 1999(5):21-22. WANG H Z, WU J Q. Development and application of activated sludge mathematical model[J]. China Water &Wastewater, 1999(5):21-22. [10] 姚重华, 刘勇弟. 活性污泥过程数学模型进展[J]. 环境化学, 2002(6):521-527. YAO Z H, LIU Y D. Progress in mathematical modeling of activated sludge process[J]. Environmental Chemistry, 2002(6):521-527. [11] 李峰, 吴敏, 杨哲. 活性污泥数学模型在我国的研究进展[J]. 中国资源综合利用, 2007(11):21-23. LI F, WU M, YANG Z. Study progress on mathematical model of activated sludge in china[J]. China Resources Comprehensive Utilization, 2007(11):21-23. [12] HOLENDA B, DOMOKOS E, REDEY A, et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control[J]. Computers & Chemical Engineering, 2008, 32(6):1270-1278. [13] 孟德良, 刘建广. 污水处理厂的能耗与能量的回收利用[J]. 给水排水, 2002(4):18-20. MENG D L, LIU J G. Sewage treatment plant energy consumption and energy recovery[J]. Water & Wastewater Engineering, 2002(4):18-20. [14] 杨春玲, 张有忱, 黎镜中. 新型气液混输型曝气增氧设备性能[J]. 化工进展, 2011, 30(3):483-487. YANG C L, ZHANG Y C, LI J Z. Study on aeration performance of a new gas-liquid increasing oxygen aeration equipment[J]. Chemical Industry and Engineering Progress, 2011,30(3):483-487. [15] 汤利华, 孟广耀. 曝气器的最优孔径分析[J]. 中国科学技术大学学报, 2006(7):775-780. TANG L H, MENG G Y. Analysis of optimum aperture of aerators[J]. Journal of University of Science and Technology of China, 2006(7):775-780. [16] 刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010(3):585-589. LIU C, ZHANG L, YANG J L, et al. Characteristics of oxygen transfer in micro-bubble aeration[J]. Chinese Journal of Environmental Engineering, 2010(3):585-589. [17] 邹联沛, 赵洪涛, 刘知人, 等. 水质条件对氧传质影响的研究[J]. 中北大学学报(自然科学版), 2010(1):45-49. ZOU L P, ZHAO H T, LIU Z R, et al. Research on impact of water quality on oxygen transition[J]. Journal of North University of China(Nature Science Edition), 2010(1):45-49. [18] CHERN J M, CHOU S R, SHANG C S. Effects of impurities on oxygen transfer rates in diffused aeration systems[J]. Water Research, 2001, 35(13):3041-3048. [19] 张玉魁, 张硌, 施汉昌. 新型生物流化反应器氧转移的特性[J]. 中国环境科学, 2003(5):100-104. ZHANG Y K, ZHANG G, SHI H C. Oxygen transfer character in a new type of biological fluidized reactor[J]. China Environmental Science, 2003(5):100-104. [20] LIU Y S, WU H Y, HO K P. Characterization of oxygen transfer conditions and their effects on Phaffiar hodozyma growth and carotenoid production in shake-flask cultures[J]. Biochemical Engineering Journal, 2006, 27(3):331-335. [21] HAO X, LIU R, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87:424-431. [22] GU Y, LI Y, LI X, et al. The feasibility and challenges of energy self-sufficient wastewater treatment plants[J]. Applied Energy, 2017, 204:1463-1475. [23] SHAMMAS N K, WANG L K. Oxidation ditch[M]//Handbook of Environmental Engineering. Totowa:Humana Press, 2009:513-538. [24] XIA S B, LIU J X. An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment[J]. Process Biochemistry, 2004, 39(9):1111-1117. [25] 刘家富, 吕斌, 曹红涛, 等. 卡鲁塞尔2000氧化沟的调试及运行[J]. 中国给水排水, 2004(11):101-103. LIU J F, LÜ B, CAO H T, et al. Commissioning operation and management of carrousel 2000 oxidation ditch[J]. China Water & Wastewater, 2004(11):101-103. [26] LUO L, LI W M, DENG Y S, et al. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model[J]. Journal of Environmental Sciences, 2005, 17(5):808-812. [27] 马昭, 刘玉玲, 巩书涵, 等. 基于ASM2D模型对奥贝尔氧化沟工艺的模拟研究[J]. 环境工程学报, 2016(12):6947-6955. MA Z, LIU Y L, GONG S H, et al. Simulation research of orbal oxidation ditch process based on ASM2D[J]. Chinese Journal of Environmental Engineering, 2016(12):6947-6955. [28] LESAGE N, SPERANDIO M, LAFFORGUE C, et al. Calibration and application of a 1-D model for oxidation ditches[J]. Chemical Engineering Research & Design, 2003, 81(A9):1259-1264. [29] CHEN L, FENG Q. Two-phase flow model applied in the oxidation ditch[J]. Advanced Materials Research, 2014, 838-841:1659-1662. [30] SOUZA R R, BRESOLIN I, BIONI T L, et al. The performance of a three-phase fluidized bed reactor in treatment of wastewater with high organic load[J]. Brazilian Journal of Chemical Engineering, 2004, 21(2):219-227. [31] JUAN L, HUA S O, CHAO H W, et al. Novel multistep physical/chemical and biological integrated system for coking wastewater treatment:technical and economic feasibility[J]. Journal of Water Process Engineering, 2016, 10:98-103. [32] DU F, LI Z, ZHANG A. Study on advanced treatment of papermaking wastewater by fluidized bed lactase bioreactor[J]. Materials Research Innovations, 2015, 19:928-935. [33] 邓志毅, 韦朝海, 吴锦华, 等. 新型A/O生物流化床处理高浓食品加工废水[J]. 中国给水排水, 2007(4):65-69. DENG Z Y, WEI C H, WU J H, et al. Application of new A/O biological fluidized bed process in high concentration food processing wastewater treatment[J]. China Water & Wastewater, 2007(4):65-69. [34] PAPIRIO S, VILLA-GOMEZ D K, ESPOSITO G, et al. Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria:a critical review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(23):2545-2580. [35] RABAH F, DAHAB M F. Nitrate removal characteristics of high performance fluidized-bed biofilm reactors[J]. Water Research, 2004, 38(17):3719-3728. [36] GÒDIA F, SOLÀ C. Fluidized-bed bioreactors[J]. Biotechnology Progress, 1995, 11(5):479-497. [37] ZHANG T, WE C H, REN Y, et al. Advances in airlift reactors:modified design and optimization of operation conditions[J]. Reviews in Chemical Engineering, 2017, 33(2):163-182. [38] 范丹, 廖建波, 韦聪, 等. 焦化废水处理工程运行能耗的单元解析模型——以OHO流化床工艺为例[J]. 环境科学学报, 2016(10):3709-3719. FAN D, LIAO J B, WEI C, et al. Unit analytical model of energy consumption during the operation of coking wastewater treatment plant:a case study of OHO fluidized bed process[J]. Acta Scientiae Circumstantiae, 2016(10):3709-3719. [39] ZHAO J, JIANG Y, YAN B, et al. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant[J]. Environmental Toxicology and Chemistry, 2014, 33(9):1967-1975. [40] 黄会静, 韦朝海, 吴超飞, 等. 焦化废水生物处理A/O/H/O工艺中氰化物的去除特性[J]. 化工进展, 2011, 30(5):1141-1146. HUANG H J, WEI C H, WU C F, et al. Characteristics of cyanide degradation in A/O/H/O coking wastewater treatment[J]. Chemical Industry and Engineering Progress, 2011, 30(5):1141-1146. [41] 易欣怡, 韦朝海, 吴超飞, 等. O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J]. 环境科学学报, 2014(9):2190-2198. YI X Y, WEI C H, WU C F, et al. Identification and transformation of nitrogen compounds in coking wastewater during O/H/O biological treatment process[J]. Acta Scientiae Circumstantiae, 2014(9):2190-2198. [42] ZHANG W, WEI C, AN G. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes[J]. Environmental Science-Processes & Impacts, 2015, 17(5):975-984. [43] ZHANG W, WEI C, YAN B, et al. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants[J]. Environmental Science and Pollution Research, 2013, 20(9):6418-6432. [44] ZHANG W, WEI C, CHAI X, et al. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant[J]. Chemosphere, 2012, 88(2):174-182. [45] 李湘溪, 吴超飞, 吴海珍, 等. 焦化废水处理过程中盐分变化及其影响因素[J]. 化工进展, 2016, 35(11):3690-3700. LI X X, WU C F, WU H Z, et al. The changes of salt and its influencing factors during coking wastewater treatment[J]. Chemical Industry and Engineering Progress, 2016, 35(11):3690-3700. [46] 张倩倩, 魏维利, 王俊安, 等. 生物转盘技术研究进展[J]. 中国水运(下半月), 2014(2):182-184. ZHANG Q Q, WEI W L, WANG J A, et al. Research progress of biological wheel technology[J]. China Water Transport, 2014(2):182-184. [47] 吴为中, 王占生. 不同生物接触氧化法的净化效果及其生物膜特性的比较[J]. 环境科学学报, 2000(s1):44-50. WU W Z, WANG Z S. Comparison of biological contact oxidation processes and the characteristics of the biofilms[J]. Acta Scientiae Circumstantiae, 2000(s1):44-50. [48] 蒋晓阳, 熊文军, 刘子正, 等. 竹制填料生物接触氧化工艺处理污染河水[J]. 环境工程学报, 2014(1):178-183. JIANG X Y, XIONG W J, LIU Z Z, et al. Experimental study on treatment of polluted water by a biological contact oxidation process filled with bamboo filler[J]. Chinese Journal of Environmental Engineering, 2014(1):178-183. [49] 汪艳霞, 许立新, 杨云龙. 膜反应器中填料的应用[J]. 科技情报开发与经济, 2003(8):169-170. WANG Y X, XU L X, YANG Y L. Application of fillers in membrane reactors[J]. Technology Information Development & Economy, 2003(8):169-170. [50] 韩梅, 高伟, 赵志伟, 等. 悬浮填料-沸石BAF处理低温高氨氮污染源水效能[J]. 中国给水排水, 2015(1):32-35. HAN M, GAO W, ZHAO Z W, et al. Efficiency of biological aerated filter with suspended media and zeolite for treatment of low-temperature and high ammonia nitrogen source water[J]. China Water & Wastewater, 2015(1):32-35. [51] GARCIA-OCHOA F, GOMEZ E, SANTOS V E, et al. Oxygen uptake rate in microbial processes:an overview[J]. Biochemical Engineering Journal, 2010, 49(3):289-307. [52] 韦朝海, 吴锦华, 吴超飞, 等. 新型内构件内循环三相流化床氧传递特性的研究[J]. 中国环境科学, 2001(6):28-31. WEI C H, WU J H, WU C F, et al. Study on the characteristics of oxygen transfer in new-type structure inner loop three-phase fluidized bed[J]. China Environmental Science, 2001(6):28-31. [53] 桑军强, 张锡辉, 孟庆宇. 水处理中的无泡供氧技术[J]. 中国给水排水, 2003(11):25-28. SANG J Q, ZHANG X H, MENG Q Y. Bubble-free oxygen treatment in water treatment[J]. China Water & Wastewater, 2003(11):25-28. [54] 殷峻, 陈英旭. 膜生物反应器中的膜污染问题[J]. 环境污染治理技术与设备, 2001(3):62-68. YIN J, CHEN Y Q. Membrane fouling in membrane bioreactors[J]. Techniques and Equipment for Environmental Pollution Control, 2001(3):62-68. [55] 高用贵, 江景杰, 李成海, 等. 纯氧曝气在垃圾焚烧厂渗滤液处理系统中的实验分析[J]. 环境工程学报, 2016(10):5689-5694. GAO Y G, JIANG J J, LI C H, et al. Experimental analysis of pure-oxygen aeration in waste incineration plant leachate treatment system[J]. Chinese Journal of Environmental Engineering, 2016(10):5689-5694. [56] 熊家晴, 舒炜, 王雷, 等. 深井曝气法处理城市污泥中试研究[J]. 中国给水排水, 2016(19):129-132. XIONG J Q, SHU W, WANG L, et al. Pilot-scale study on deep well aeration method for treatment of municipal sewage sludge[J]. China Water & Wastewater, 2016(19):129-132. [57] 郭振英, 吕荣湖, 孙惠东. 高效好氧生物技术及其在污水处理中的应用[J]. 化工进展, 2008, 27(10):1533-1537. GUO Z Y, LÜ R H, SUN H D. Aerobic bioreactors with high efficiency and their application in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2008, 27(10):1533-1537. [58] LEE I, LIM H, JUNG B, et al. Evaluation of aeration energy saving in two modified activated sludge processes[J]. Chemosphere, 2015, 140(s1):72-78. [59] 任源, 韦朝海, 吴超飞, 等. 焦化废水水质组成及其环境学与生物学特性分析[J]. 环境科学学报, 2007(7):1094-1100. REN Y, WEI C H, WU C F, et al. Environmental and biological characteristics of coking wastewater[J]. Acta Scientiae Circumstantiae, 2007(7):1094-1100. [60] 韦聪, 李磊, 吕文英, 等. 工业废水COD(Cr)测定方法与技术发展过程分析[J]. 中国测试, 2017(7):1-9. WEI C, LI L, LÜ W Y, et al. Analysis of the development of the industrial wastewater COD Cr determination method and technology[J]. China Measurement & Test, 2017(7):1-9. [61] 陈旭露, 王洪臣, 齐鲁, 等. 阴离子表面活性剂对微孔曝气氧传质过程影响的研究[J]. 环境科学学报, 2013(2):395-400. CHEN X L, WANG H C, QI L, et al. Effects of anionic surfactant on oxygen mass transfer in the fine bubble aeration[J]. Acta Scientiae Circumstantiae, 2013(2):395-400. [62] 王军, 方亮, 刘延来, 等. ALR中表面活性物质对氧气液传质影响[J]. 大连理工大学学报, 2003(6):733-736. WANG J, FAN L, LIU Y L, et al. Effect of surfactant on mass transfer of oxygen in ALR[J]. Journal of Dalian University of Technology, 2003(6):733-736 [63] 张涛. 内循环流化床反应器流动传质特性的计算流体力学模拟研究[D]. 广州:华南理工大学, 2012. ZHANG T. Simulation of mass transfer and hydrodynamic characteristics in internal loop fluidized bed reactor by computational fluid dynamics method[D]. Guangzhou:South China University of Technology, 2012. [64] LU X P, DING J, WANG Y R, et al. Comparison of the hydrodynamics and mass transfer characteristics of a modified square airlift reactor with common airlift reactors[J]. Chemical Engineering Science, 2000, 55(12):2257-2263. [65] 张智, 柴华, 李柏林. A2O氧化沟缺氧区三维流场模拟及结构形式优化[J]. 环境工程学报, 2012(1):46-50. ZHANG Z, CHAI H, LI B L. Simulation on three-dimensional flow field and improvement on structure of anoxic zone of A2O oxidation ditch[J]. Chinese Journal of Environmental Engineering, 2012(1):46-50. [66] 杨宁, 王旭, 郭雪松, 等. 立体循环一体化氧化沟(IODVC)导流板结构优化研究[J]. 环境科学学报, 2016(3):914-919. YANG N, WANG X, GUO X S, et al. Structural optimization of guide-plates in an integrated oxidation ditch with vertical circle (IODVC)[J]. Acta Scientiae Circumstantiae, 2016(3):914-919. [67] 朱家亮, 陈祥佳, 张涛, 等. 基于CFD的内构件强化内循环流化床流场结构分析[J]. 环境科学学报, 2011(6):1212-1219. ZHU J L, CHEN X J, ZHANG T, et al. Computational fluid dynamics simulation of hydrodynamics in an internal-loop fluidized bed reactor with a funnel-shaped internal[J]. Acta Scientiae Circumstantiae, 2011(6):1212-1219. [68] ZHANG T, WE C, REN Y, et al. Advances in airlift reactors:modified design and optimization of operation conditions[J]. Reviews in Chemical Engineering, 2017, 33(2):163-182. [69] LUO L, YUAN J, XIE P, et al. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates[J]. Chemical Engineering Research and Design, 2013, 91(12):2377-2388. [70] GLUZ M D, MERCHUK J C. Modified airlift reactors:the helical flow promoters[J]. Chemical Engineering Science Chemical Reaction Engineering, 1996, 51(11):2915-2920. [71] FAYOLLE Y, COCKX A, GILLOT S, et al. Oxygen transfer prediction in aeration tanks using CFD[J]. Chemical Engineering Science, 2007, 62(24):7163-7171. [72] 陈梓晟, 张涛, 麦礼杰, 等. 正方形流化床结构参数改变和内构件强化的数值模拟解析[J]. 化工进展, 2017, 36(6):1997-2009. CHEN Z S, ZHANG T, MAI L J, et al. Analysis for numerical optimization on square fluidized bed with altering structural parameters and internals reinforcement[J]. Chemical Industry and Engineering Progress, 2017, 36(6):1997-2009. [73] RUSSELL A B, THOMAS C R, LILLY M D. The influence of vessel height and top-section size on the hydrodynamic characteristics of airlift fermentors[J]. Biotechnology and Bioengineering, 1994, 43(1):69-76. [74] WEILAND P. Influence of draft tube diameter on operation behavior of airlift loop reactors[J]. Khawarizmi Engineering Journal, 2010, 6(2):374-385. [75] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass:a review of subcritical water technologies[J]. Energy, 2011, 36(5):2328-2342. [76] MURAKAMI T, SUZUKI Y, NAGASAWA H, et al. Combustion characteristics of sewage sludge in an incineration plant for energy recovery[J]. Fuel Processing Technology, 2009, 90(6):778-783. [77] KWON E E, KIM S, JEON Y J, et al. Biodiesel production from sewage sludge:new paradigm for mining energy from municipal hazardous material[J]. Environmental Science & Technology, 2012, 46(18):10222-10228. [78] DONATELLO S, CHEESEMAN C R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA):a review[J]. Waste Management, 2013, 33(11):2328-2340. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[3] | YING Luyao, WANG Rongchang. Removal pathways of antibiotic pollutants by bacterial-algal consortium and its stress response mechanisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 469-479. |
[4] | ZHANG Lizhu, WANG Huan, LI Qiong, YANG Dongjie. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744. |
[5] | LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248. |
[6] | LI Haitao, WANG Dong. Practice and prospect of purified terephthalic acid production wastewater treatment and CO2co-utilization technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1132-1135. |
[7] | CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963. |
[8] | JIANG Bolong, SHI Shunjie, JIANG Hailin, FENG Xin, SUN Haofen. Research progress in phenol adsorption mechanism over metal-organic framework from wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4525-4539. |
[9] | WU Jianping, JIN Ziheng, CHANG Yingfu, ZHANG Jin, JIANG Xia. Biological deodorization technologies in wastewater treatment plant and their application [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2774-2783. |
[10] | Shuaiqi LI,Hanzhi WANG,Ziping FENG,Shihui HE,Wenji SONG. Performance analysis of a MVR evaporative crystallization system coupled with super-heated steam drying technology [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 439-445. |
[11] | Zejian HUANG,Yiqing LUO,Xigang YUAN. Environmental impact assessment of water treatment integrated microalgae biodiesel life cycle system [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 34-41. |
[12] | Shaoqi CHEN, Yuanyuan SHAO, Keying MA, Ying ZHENG, Jingxu ZHU. Development and applications of liquid-solid circulating fluidized beds—Process integration and intensification [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 122-137. |
[13] | LI Ze, JI Yuanling, ZHANG Yuxi, ZHANG Xiaofei, LI Xuening, WU Baichun, LI Xingchun. Application of GC-MS for the determination of volatile organic compounds in refinery wastewater treatment process [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 4053-4059. |
[14] | WU Haizhen, WEI Cong, YU Zhe, WEI Jingyue, WU Chaofei, WEI Chaohai. Oxygen dissolution and gas liquid mass transfer in aerobic biological wastewater treatment: theory and practice [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 4033-4043. |
[15] | ZHOU Ya, YANG Chun. Degradation of 4-chloronitrobenzene by bioelectrochemical system [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 375-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |