Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (10): 4033-4043.DOI: 10.16085/j.issn.1000-6613.2018-0289
Previous Articles Next Articles
WU Haizhen1, WEI Cong2, YU Zhe2, WEI Jingyue2, WU Chaofei2, WEI Chaohai2
Received:
2018-02-01
Revised:
2018-05-07
Online:
2018-10-05
Published:
2018-10-05
吴海珍1, 韦聪2, 于哲2, 韦景悦2, 吴超飞2, 韦朝海2
通讯作者:
韦朝海,教授,博士生导师,研究方向为水污染控制处理与技术。
作者简介:
吴海珍(1969-),女,博士,副教授,研究方向为环境生物技术。E-mail:hzhwu2@scut.edu.cn。
基金资助:
CLC Number:
WU Haizhen, WEI Cong, YU Zhe, WEI Jingyue, WU Chaofei, WEI Chaohai. Oxygen dissolution and gas liquid mass transfer in aerobic biological wastewater treatment: theory and practice[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 4033-4043.
吴海珍, 韦聪, 于哲, 韦景悦, 吴超飞, 韦朝海. 废水好氧生物处理工艺中氧的传质与强化的理论与实践[J]. 化工进展, 2018, 37(10): 4033-4043.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0289
[1] 张自杰, 林荣忱. 排水工程(下册)[M]. 北京:中国建筑工业出版社, 2000. ZHANG Z J, LIN R C. Drainage engineering[M]. Beijing:China Building Industry Press, 2000. [2] 秦麟源. 废水生物处理[M]. 上海:同济大学出版社, 1989. QIN L Y. Wastewater biological treatment[M]. Shanghai:Tongji University Press, 1989. [3] VOSS M A, AHMED T, SEMMENS M J. Long-term performance of parallel-flow, bubbleless, hollow-fiber-membrane aerators[J]. Water Environment Research, 1999, 71(1):23-30. [4] VAXELAIRE J, ROCHE N, PROST C. Oxygen transfer in activated sludge surface-aerated process[J]. Environmental Technology, 1995, 16(3):279-285. [5] MARROT B, BARRIOS-MARTINEZ A, MOULIN P, et al. Experimental study of mass transfer phenomena in a cross flow membrane bioreactor:aeration and membrane separation[J]. Engineering in Life Sciences, 2005, 5(5):409-414. [6] 北京师范大学. 无机化学[M]. 4版. 北京:高等教育出版社, 2003. Beijing Normal University. Inorganic chemistry[M]. 4th ed. Beijing:Higher Education Press, 2003. [7] 申泮文. 近代化学导论上[M]. 北京:高等教育出版社, 2008. SHEN P W. Introduction to modern chemistry[M]. Beijing:Higher Education Press, 2008. [8] 竺际舜. 无机化学[M]. 北京:科学出版社, 2008. ZHU J S. Inorganic chemistry[M]. Beijing:Science Press, 2008. [9] 华南理工大学无机化学教研室. 无机化学[M]. 北京:化学工业出版社, 2001. South China University of Technology of Inorganic Chemistry Department. Inorganic chemistry[M]. Beijing:Chemical Industry Press, 2001. [10] 付晓泰, 王振平, 卢双舫. 气体在水中的溶解机理及溶解度方程[J]. 中国科学, 1996(2):124-130. FU X T, WANG Z P, LU S F. Gas dissolved mechanism and solubility equation in water[J]. Science in China, 1996(2):124-130. [11] 刘载荣, 周志华. 非极性气体在水中的溶解性和单位体积极化率判据[J]. 南京师大学报(自然科学版), 1991(3):47-51. LIU Z R, ZHOU Z H. Solubility of nonpolar gases in water and criterion of polarizability per unit volume[J]. Journal of Nanjing University(Natural Science), 1991(3):47-51. [12] 刘星. 曝气技术中氧传质影响因素的实验研究[D]. 大连:大连理工大学, 2008. LIU X. The experimental study on the influence factors of oxygen transfer in aeration system[D]. Dalian:Dalian University of Technology, 2008. [13] 吴超飞, 韦朝海, 梁世中. 废水处理生物流化床中O2传递特性的研究[J]. 环境科学与技术, 1996(1):13-16. WU C F, WEI C H, LIANG S Z. Study on oxygen transfer characteristics in wastewater treatment biological fluidized bed[J]. Environmental Science and Technology, 1996(1):13-16. [14] 孙从军, 陈季华. 水温对氧转移速率的影响研究[J]. 环境科学研究, 1998(4):15-17. SUN C J, CHEN J H. Effect of water temperature on oxygen transfer rate[J]. Environmental Science Research, 1998(4):15-17. [15] 王红星, 纪志永, 李鑫钢, 等. 膜法供氧的传质过程研究[J]. 化学工程, 2008(2):33-36. WANG H X, JI Z Y, LI X G, et al. Study on mass transfer process of bubble free aeration by using membrane[J]. Chemical Engineering, 2008(2):33-36. [16] 韦聪, 李磊, 吕文英, 等. 工业废水CODCr测定方法与技术发展过程分析[J]. 中国测试, 2017(7):1-9. WEI C, LI L, LV W, et al. Analysis of the development of the industrial wastewater CODCr determination method and technology[J]. China Measurement & Test, 2017(7):1-9. [17] 王伟松, 钱建芳, 王新荣. 表面活性剂在分散体系中的应用现状及发展趋势[J]. 中国高新技术企业, 2010(24):189-190. WANG W S, QIAN J F, WANG X R. Application status and development trend of surfactant in dispersion system[J]. China High-tech Enterprises, 2010(24):189-190. [18] HESKETH R P, ETCHELLS A W, RUSSELL T W F. Bubble breakage in pipeline flow[J]. Chemical Engineering Science, 1991, 46(1):1-9. [19] KIM Y K, RA D G. Water surface contacting cover system-the basic study for improving the oxygen transfer coefficient and the BOD removal capacity[J]. Water Research, 2005, 39(8):1553-1559. [20] 刘亚, 林逢凯, 胥峥. 表面活性物质强化活性污泥系统作用的研究[J]. 净水技术, 2009(5):34-38. LIU Y, LIN F K, XU Z. Invigoration effect of activated sludge plant by adding surface active agent[J]. Water Purification Technology, 2009(5):34-38. [21] 曹敬华, 明欲晓. 压力对加压生物反应器氧转移的影响[J]. 中国给水排水, 2002(9):34-36. CAO J H, MING Y X. Effect of pressure on oxygen transfer in pressurized bioreactor[J]. China Water & Wastewater, 2002(9):34-36. [22] 张诗华, 郑俊. 加压生物氧化技术在废水处理中的应用及研究进展[J]. 水处理技术, 2010(8):10-15. ZHANG S H, ZHENG J. Application and research development of technology with pressurized biological oxidation in wastewater treatment[J]. Technology of Water Treatment, 2010(8):10-15. [23] 曹亚玲, 巩有奎, 李国新. 射流曝气-压力式接触氧化塔氧传质特性研究[J]. 河北师范大学学报(自然科学版), 2008, 32(6):794-797. CAO Yaling, GONG Youkui, LI Guoxin. Characteristics of oxygen transformation in the aeration-pressureized biological contact oxidation process[J]. Journal of Hebei Normal University (Natural Science Edition), 2008, 32(6):794-797. [24] 吴慧英, 施周, 宋力, 等. 加压生物反应器结合气浮处理医院污水应用研究[J]. 水处理技术, 2013(4):66-69. WU Huiying, SHI Zhou, SONG Li, et al. Applied research on hospital sewage treatment by pressurized aeration bio-reactor combination with flolation[J]. Technology of Water Treatment, 2013(4):66-69. [25] BURRIS V L, LITTLE J C. Bubble dynamics and oxygen transfer in a hypolimnetic aerator[J]. Water Science and Technology, 1998, 37(2):293-300. [26] MCGINNIS D F, LITTLE J C. Predicting diffused-bubble oxygen transfer rate using the discrete-bubble model[J]. Water Research, 2002, 36(18):4627-4635. [27] 张炎, 黄为民. 气泡大小对反应器内氧传递系数的影响[J]. 应用化工, 2005(12):734-736. ZHANG Y, HUANG W M. Effect of bubble size on the oxygen transfer coefficient in reactor[J]. Applied Chemical Industry, 2005(12):734-736. [28] 韦朝海, 焦向东, 陈焕钦. 生物好氧流化床废水处理技术研究进展[J]. 环境科学与技术, 1998(4):5-9. WEI C H, JIAO X D, CHEN H Q. Advances in the technology of wastewater treatment by aerobic biological fluidized bed[J]. Environmental Science and Technology, 1998(4):5-9. [29] BOLONG N, ISMAIL A F, SALIM M R, et al. A review of the effects of emerging contaminants in wastewater and options for their removal[J]. Desalination, 2009, 239(1/2/3):229-246. [30] ALKHADDAR R M, PHIPPS D A, CHENG C. Research prospects for aerobic biological liquid waste treatment for reduction of carbon load[R]. 2005. [31] 中华人民共和国住房和城乡建设部. 室外排水设计规范(2014年版):GB50014-2006[S]. 北京:中国计划出版社, 2014. Ministry Housing and Urban-rural Development of the People's Republic of China. Code for design of outdoor wastewater engineering(2014 ed.):GB50014-2006[S]. Beijing:China Planning Press, 2014. [32] GERMAN ATV-DVWK rules and standards. Standard ATV-DVWK-A 131E. Dimensioning of single-stage activated sludge plants[S/OL]. 2000.[2018-01-15]. https://wenku.baidu.com/view/170207d084254b35eefd3408.html. [33] GERMAIN E, STEPHENSON T. Biomass characteristics, aeration and oxygen transfer in membrane bioreactors:their interrelations explained by a review of aerobic biological processes[J]. Reviews in Environmental Science and Bio/Technology, 2005, 4(4):223-233. [34] MULLER E B, STOUTHAMER A H, VERSEVELD H W, et al. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration[J]. Water Research, 1995, 29(4):1179-1189. [35] KRAMPE J, KRAUTH K. Oxygen transfer into activated sludge with high MLSS concentrations[R]. 2003. [36] ROSENBERGER S, KUBIN K, KRAUME M. Rheology of activated sludge in membrane bioreactors[J]. Engineering in Life Sciences, 2003, 151(2):195-200. [37] KRAUSE S, CORNEL P, WAGNER M. Comparison of different oxygen transfer testing procedures in full-scale membrane bioreactors[J]. Water Science and Technology, 2003, 47(12):169-176. [38] GERMAIN E, NELLES F, DREWS A, et al. Biomass effects on oxygen transfer in membrane bioreactors[J]. Water Research, 2007, 41(5):1038-1044. [39] HENKEL J, LEMAC M, WAGNER M, et al. Oxygen transfer in membrane bioreactors treating synthetic greywater[J]. Water Research, 2009, 43(6):1711-1719. [40] GÜNDER B. The membrane-coupled activated sludge process in municipal wastewater treatment[M]. Boca Raton:CRC Press, 2000. [41] MUELLER J, BOYLE W C, POPEL H J. Aeration:principles and practice[M]. Boca Raton:CRC Press, 2002. [42] WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?[M]//Microbial extracellular polymeric substances, Berlin Heidelberg:Springer, 1999:1-19. [43] WINGENDER J, NEU T R, FLEMMING H C. Microbial extracellular polymeric substances:characterization, structure and function[M]. New York:Springer Science & Business Media, 2012. [44] KOPP J B. Biomineralization in magnetotactic bacteria[J]. Proteins, 2001, 11:1-11. [45] HENKEL J, CORNEL P, WAGNER M. Free water content and sludge retention time:impact on oxygen transfer in activated sludge[J]. Environmental Science & Technology, 2009, 43(22):8561-8565. [46] TREMIER A, GUARDIA A, MASSIANI C, et al. A respirometric method for characterizing the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted[J]. Bioresource Technology, 2005, 96(2):169-180. [47] GIORDANO A, STANTE L, PIROZZI F, et al. Sequencing batch reactor performance treating PAH contaminated lagoon sediments[J]. Journal of Hazardous Materials, 2005, 119(1/2/3):159-166. [48] DESHPANDE R R, HEINZLE E. On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors[J]. Biotechnology Letters, 2004, 26(9):763-767. [49] HAO X D, WANG Q L, ZHANG X P, et al. Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge[J]. Water Research, 2009, 43(14):3604-3612. [50] GARCIA O F, GOMEZ E, SANTOS V E, et al. Oxygen uptake rate in microbial processes:an overview[J]. Biochemical Engineering Journal, 2010, 49(3):289-307. [51] RAUNKJAER K H, VITVED-JACOBSEN T, NIELSEN P. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater[J]. Water Research, 1994, 28(2):251-262. [52] NOVÁK L, LARREA L, WANNER J. Mathematical model for soluble carbonaceous substrate bio-sorption[J]. Water Science and Technology, 1995, 31(2):67-77. [53] TAN T W, NG H Y, ONG S L. Effect of mean cell residence time on the performance and microbial diversity of pre-denitrification submerged membrane bioreactors[J]. Chemosphere, 2008, 70(3):387-396. [54] GOMEZ E, SANTOS V E, ALCON A, et al. Oxygen-uptake and mass-transfer rates on the growth of Pseudomonas putida CECT5279:influence on biodesulfurization (BDS) capability[J]. Energy & Fuels, 2006, 20(4):1565-1571. [55] GARCJA O F, CASTRO E G, SANTOS V E. Oxygen transfer and uptake rates during xanthan gum production[J]. Enzyme and Microbial Technology, 2000, 27(9):680-690. [56] LESLIE GRADY JR C P, DAIGGER Glen T, LIM Henry C. 废水生物处理(第2版):改编和扩充[M]. 张锡辉, 刘勇弟, 译. 北京:化学工业出版社, 2003. LESLIE GRADY JR C P, DAIGGER Glen T, LIM Henry C. Biological wastewater treatment (second edition):revised and expanded[M]. ZHANG Xihui, LIU Yongdi, trans. Beijing:Chemical Industry Press, 2003. [57] SANDFORD D S, GALLO T. Application of deep shaft technology to the treatment of food processing wastewater[J]. Environmental Protection Technology Series, 1978. EPA600/2-78-188. [58] 温新品. 深井曝气技术发展及探讨[J]. 化学工程与装备, 2011(8):160-162. WEN X P. Development and discussion of deep well aeration technology[J]. Chemical Engineering and Equipment, 2011(8):160-162. [59] 闫广平. 加压曝气生物氧化法处理乙醛废水的动力学研究[D]. 长春:东北师范大学, 2006. YAN G P. Dynamics research on pressurized aeration biological oxidation process for treating acetaldehyde wastewater[D]. Changchun:Northeast Normal University, 2006. [60] 陈立波, 李风亭. 压力曝气生物反应器处理废水的研究[J]. 同济大学学报(自然科学版), 2007(9):1219-1224. CHEN L B, LI F T. Study of wastewater treatment by pressurized aeration bio-reactor[J]. Journal of Tongji University (Nature Science), 2007(9):1219-1224. [61] 张诗华, 郑俊, 王健. 加压固定床生物膜反应器降解污水中有机物的研究[J]. 中国给水排水, 2009(11):47-50. ZHANG S H, ZHENG J, WANG J. Degradation of organic compounds in wastewater in pressurized fixed bed biofilm reactor[J]. China Water & Wastewater, 2009(11):47-50. [62] ASHLEY K I, MAVINIC D S, HALL K J. Bench-scale study of oxygen transfer in coarse bubble diffused aeration[J]. Water Research, 1992, 26(10):1289-1295. [63] HASEGAWA H, NAGASAKA Y, KATAOKA H. Electrical potential of microbubble generated by shear flow in pipe with slits[J]. The 1st international colloquium on dynamics, physics and chemistry of bubbles and gas-liquid boundaries, 2008, 40(7/8):554-564. [64] CHU L B, XING X H, YU A F, et al. Enhanced ozone of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10):1854-1860. [65] CHOI Y J, PARK J Y, KIM Y J, et al. Flow characteristics of microbubble suspensions in porous media as an oxygen carrier[Z]. Verlag, 2008(36):59-65. [66] XU Q Y, NAKAJIMA M, ICHIKAWA S, et al. A comparative study of microbubble generation by mechanical agitation and sonication[J]. Innovative Food Science & Emerging Technologies, 2008, 9(4):489-494. [67] 刘坤, 高廷耀. 关于微孔曝气系统性能及其设计的探讨[J]. 净水技术, 2002(4):5-8. LIU K, GAO T Y. Research on the performance and design fine bubble aeration system[J]. Water Purification Technology, 2002(4):5-8. [68] 刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010(3):585-589. LIU C, ZHANG L, YANG J L, et al. Characteristics of oxygen transfer in microbubble aeration[J]. Chinese Journal of Environment Engineering, 2010(3):585-589. [69] CAPELA S, ROUSTAN M, HDUIT A. Transfer number in fine bubble diffused aeration systems[J]. Water Science & Technology, 2001, 43(11):145-152. [70] DUDLEY J. Mass transfer in bubble columns:a comparison of correlations[J]. Water Research, 1995, 29(4):1129-1138. [71] GILLOT S, CAPELA S, HEDUIT A. Effect of horizontal flow on oxygen transfer in clean water and in clean water with surfactants[J]. Water Research, 2000, 34(2):678-683. [72] KULKARNI A, SHAH Y T, KELKAR B G. Gas holdup in bubble column with surface-active agents:a theoretical model[J]. AIChE J. 1987, 33(4):690-693. [73] 李尔, 曾祥英, 范跃华. 微孔曝气最优气泡群的确定方法[J]. 水处理技术, 2007(7):21-24. LI E, ZENG X Y, FAN Y H. Determination of optimal bubble group in micro-pore[J]. Technology of Water Treatment, 2007(7):21-24. [74] 郝建昌, 张安龙. 射流曝气技术在工业废水处理中的应用[J]. 化工环保, 2005(6):451-454. HAO J C, ZHANG A L. Jet aeration technology and its application in industrial wastewater treatment[J]. Environment Protection of Chemical Industry, 2005(6):451-454. [75] 瞿永彬, 俞庭康, 沈燕云. 射流曝气器充氧性能研究[J]. 同济大学学报(自然科学版), 1993(1):129-134. ZHAI Y B, YU T K, SHEN Y Y. Study on the oxygenation performance of the jet aerator[J]. Journal of Tongji University, 1993(1):129-134. [76] 王全勇, 刘汝鹏, 曲莹, 等. 射流间歇曝气氧化沟工艺处理城市污水[J]. 中国给水排水, 2008(8):59-62. WANG Q Y, LIU R P, QU Y, et al. Application of oxidation ditch with intermittent jet aeration to municipal wastewater treatment[J]. China Water & Wastewater, 2008(8):59-62. [77] 韦朝海, 谢波, 吴超飞, 等. 三重环流生物流化床的流体力学与传质特性[J]. 化学反应工程与工艺, 1999(2):55-62. WEI C H, XIE B, WU C F, et al. Hydrodynamics and mass transfer of triplet loop biological fluidized bed[J]. Chemical Reaction Engineering and Technology, 1999(2):55-62. [78] 韦朝海, 李磊, 吴锦华, 等. 漏斗型导流内构件对内循环三相流化床流体力学与传质特性的影响[J]. 化工学报, 2007(3):591-595. WEI C H, LI L, WU J H, et al. Influence of funnel-shape internals on hydrodynamics and mass transfer in internal loop three phase fluidized bed[J]. CIESC Journal, 2007(3):591-595. [79] PANKHANIA M, STEPHENSON T, SEMMENS M J. Hollow fiber bioreactor for wastewater treatment using bubble less membrane aeration[J]. Water Research, 1994, 28(10):2233-2236. [80] 韦朝海, 孙寿家, 佘健. 活性炭处理含氰废水机理研究——吸附和催化氧化机理[J]. 华南理工大学学报(自然科学版), 1994(5):1-9. WEI C H, SUN S J, SHE J. A study of mechanism of treating cyanide containing wastewater by activated carbon-the mechanism of adsorption and catalytic oxidation[J]. Journal of South China University of Technology (Natural Science), 1994(5):1-9. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[4] | YING Luyao, WANG Rongchang. Removal pathways of antibiotic pollutants by bacterial-algal consortium and its stress response mechanisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 469-479. |
[5] | ZHANG Lizhu, WANG Huan, LI Qiong, YANG Dongjie. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744. |
[6] | LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248. |
[7] | LI Haitao, WANG Dong. Practice and prospect of purified terephthalic acid production wastewater treatment and CO2co-utilization technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1132-1135. |
[8] | CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963. |
[9] | JIANG Bolong, SHI Shunjie, JIANG Hailin, FENG Xin, SUN Haofen. Research progress in phenol adsorption mechanism over metal-organic framework from wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4525-4539. |
[10] | WU Jianping, JIN Ziheng, CHANG Yingfu, ZHANG Jin, JIANG Xia. Biological deodorization technologies in wastewater treatment plant and their application [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2774-2783. |
[11] | Shuaiqi LI,Hanzhi WANG,Ziping FENG,Shihui HE,Wenji SONG. Performance analysis of a MVR evaporative crystallization system coupled with super-heated steam drying technology [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 439-445. |
[12] | Zejian HUANG,Yiqing LUO,Xigang YUAN. Environmental impact assessment of water treatment integrated microalgae biodiesel life cycle system [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 34-41. |
[13] | Shaoqi CHEN, Yuanyuan SHAO, Keying MA, Ying ZHENG, Jingxu ZHU. Development and applications of liquid-solid circulating fluidized beds—Process integration and intensification [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 122-137. |
[14] | WEI Chaohai, RU Xuan, YANG Xingzhou, FENG Chunhua, WEI Yongfen, LI Fusheng. Energy saving strategy based on oxygen control in wastewater bio-treatment [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4121-4134. |
[15] | LI Ze, JI Yuanling, ZHANG Yuxi, ZHANG Xiaofei, LI Xuening, WU Baichun, LI Xingchun. Application of GC-MS for the determination of volatile organic compounds in refinery wastewater treatment process [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 4053-4059. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |