Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 122-137.DOI: 10.16085/j.issn.1000-6613.2018-1249
• Chemical processes and equipment • Previous Articles Next Articles
Shaoqi CHEN1(),Yuanyuan SHAO1,Keying MA1(),Ying ZHENG2,Jingxu ZHU1,2()
Received:
2018-06-16
Revised:
2018-09-19
Online:
2019-01-05
Published:
2019-01-05
Contact:
Keying MA,Jingxu ZHU
陈少奇1(),邵媛媛1,马可颖1(),郑莹2,祝京旭1,2()
通讯作者:
马可颖,祝京旭
作者简介:
陈少奇(1996—),男,硕士研究生,研究方向为多相流态化及其过程强化。E-mail:<email>chen_shaoqi@tju.edu.cn</email>。|马可颖,博士,研究方向为多相流态化及其过程强化。E-mail:<email>keyingma@tju.edu.cn</email>|祝京旭,博士,教授,研究方向为颗粒学及流态化技术与装备。E-mail:<email>jessezhu@tju.edu.cn</email>
基金资助:
CLC Number:
Shaoqi CHEN, Yuanyuan SHAO, Keying MA, Ying ZHENG, Jingxu ZHU. Development and applications of liquid-solid circulating fluidized beds—Process integration and intensification[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 122-137.
陈少奇, 邵媛媛, 马可颖, 郑莹, 祝京旭. 液固循环流化床的开发与应用——过程集成与强化[J]. 化工进展, 2019, 38(01): 122-137.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1249
操作条件 | 数值 |
---|---|
洗脱液的流量/L·h-1 | 30 |
乳清进料流量/L·h-1 | 5.7 |
上行床顶部冲洗水流流量/L·h-1 | 1.8 |
下行床底部冲洗水流流量/L·h-1 | 2.1 |
颗粒循环量/kg·m-2·s-1 | 1.42 |
进料乳清浓度/g·L-1 | 70 |
操作条件 | 数值 |
---|---|
洗脱液的流量/L·h-1 | 30 |
乳清进料流量/L·h-1 | 5.7 |
上行床顶部冲洗水流流量/L·h-1 | 1.8 |
下行床底部冲洗水流流量/L·h-1 | 2.1 |
颗粒循环量/kg·m-2·s-1 | 1.42 |
进料乳清浓度/g·L-1 | 70 |
操作条件 | 数值 |
---|---|
洗脱液流量/L·min-1 | 0.3 |
进料流量/L·min-1 | 0.64 |
上行床表观液速/mm·s-1 | 11.3 |
下行床表观液速/mm·s-1 | 0.6 |
颗粒循环量/kg·m-2·s-1 | 1.42 |
进料中牛血清蛋白浓度/g·L-1 | 2 |
上行床固含率 | 0.035 |
下行床固含率 | 0.34 |
操作条件 | 数值 |
---|---|
洗脱液流量/L·min-1 | 0.3 |
进料流量/L·min-1 | 0.64 |
上行床表观液速/mm·s-1 | 11.3 |
下行床表观液速/mm·s-1 | 0.6 |
颗粒循环量/kg·m-2·s-1 | 1.42 |
进料中牛血清蛋白浓度/g·L-1 | 2 |
上行床固含率 | 0.035 |
下行床固含率 | 0.34 |
参数 | 进水/mg·L-1 | 出水/mg·L-1 |
---|---|---|
COD | 273 | 26 |
SCOD | 73 | 21 |
NH4 +-N | 19 | 0.7 |
NO3 –-N | 0.5 | 6.5 |
TN | 31.2 | 8.6 |
TP | 3.8 | 0.8 |
TSS | 144 | 4 |
VSS | 118 | 3 |
参数 | 进水/mg·L-1 | 出水/mg·L-1 |
---|---|---|
COD | 273 | 26 |
SCOD | 73 | 21 |
NH4 +-N | 19 | 0.7 |
NO3 –-N | 0.5 | 6.5 |
TN | 31.2 | 8.6 |
TP | 3.8 | 0.8 |
TSS | 144 | 4 |
VSS | 118 | 3 |
参数 | 进水/mg·L-1 | 出水/mg·L-1 |
---|---|---|
COD | 262 | 20 |
SCOD | 234 | 9.5 |
NH4 +-N | 26.1 | 0.5 |
NO3 –-N | 0.7 | 3.9 |
TN | 29.5 | 5.4 |
TP | 4.4 | 3.8 |
TSS | 27 | 16.3 |
VSS | 19 | 12 |
参数 | 进水/mg·L-1 | 出水/mg·L-1 |
---|---|---|
COD | 262 | 20 |
SCOD | 234 | 9.5 |
NH4 +-N | 26.1 | 0.5 |
NO3 –-N | 0.7 | 3.9 |
TN | 29.5 | 5.4 |
TP | 4.4 | 3.8 |
TSS | 27 | 16.3 |
VSS | 19 | 12 |
参数 | CFBBR-Ⅰ[ | CFBBR-Ⅱ[ | 中试 CFBBR[ |
---|---|---|---|
HRT/h | 2.04 | 2.88 | 2.03 |
EBCT/h | 0.82 | 0.98 | 1.5 |
SRT/d | 44~56 | 72~108 | 20~39 |
OLR/kg·m-3·d-1 | 3.36 | 2.23 | 4.12 |
COD/% | 91 | 97 | 90 |
N/% | 78 | 84 | 80 |
P/% | 85 | 12 | 70 |
生物产量/mgVSS·(mgCOD)-1 | 0.12~0.135 | 0.071 | 0.12~0.16 |
参数 | CFBBR-Ⅰ[ | CFBBR-Ⅱ[ | 中试 CFBBR[ |
---|---|---|---|
HRT/h | 2.04 | 2.88 | 2.03 |
EBCT/h | 0.82 | 0.98 | 1.5 |
SRT/d | 44~56 | 72~108 | 20~39 |
OLR/kg·m-3·d-1 | 3.36 | 2.23 | 4.12 |
COD/% | 91 | 97 | 90 |
N/% | 78 | 84 | 80 |
P/% | 85 | 12 | 70 |
生物产量/mgVSS·(mgCOD)-1 | 0.12~0.135 | 0.071 | 0.12~0.16 |
1 | DAIZO K , LEVENSPIEL O D . Fluidization engineering[M]. 2nd ed. Oxford: Butterworth-Heinemann, 1991. |
2 | 金涌 . 流态化工程原理[M]. 北京: 清华大学出版社, 2002. |
JIN Y . Fluidization engineering principles[M]. Beijing:Tsinghua University Press, 2002. | |
3 | GRACE J R . High-velocity fluidized bed reactors[J]. Chemical Engineering Science, 1990,45(8): 1953-1966. |
4 | ZHU J , YANG Y L , JIN Y ,et al . Local slip behavior in the circulating fluidized bed[J]. AIChE Symposium Series, 1993,89(296): 81-90. |
5 | DI FELICE R , GIBILARO L G , RAPAGNA S ,et al . Particle mixing in a circulating liquid fluidized bed[J]. AIChE Symposium Series, 1989,85(270): 32-36. |
6 | PIROZZI D , GIANFREDA L , GRECO G ,et al . Development of a circulating fluidized bed fermentor: the hydrodynamic model for the system[J]. AIChE Symposium Series, 1989,85(270): 101-110. |
7 | 梁五更, 张书良, 俞芷青, 等 . 液固循环流化床的研究(Ⅰ): 相含率及颗粒循环速率[J]. 化工学报, 1993(6): 666-671. |
LIANG W G , ZHANG S L , YU Z Q ,et al .Liquid – solid circulating fluidized bed (Ⅰ): Studies on the phase holdups and solid circulating rate[J].Journal of Chemical Industry & Engineering(China),1993(6):666-671. | |
8 | 梁五更,张书良,俞芷青,等 . 液固循环流化床的研究(Ⅱ): 表观滑落速度及曳力系数[J]. 化工学报, 1993(6): 672-676. |
LIANG W G , ZHANG S L , YU Z Q ,et al .Liquid-solid circulating fluidized bed (Ⅱ). Studies on the apparent slip velocity and drag coefficient[J]. Journal of Chemical Industry & Engineering(China),1993(6):672-676. | |
9 | LIANG W G , YU Z Q , JIN Y ,et al . Synthesis of linear alkylbenzene in a liquid-solid circulating fluidized bed reactor[J]. Journal of Chemical Technology & Biotechnology, 1995,62(1): 98-102. |
10 | LIANG W G , YU Z Q , JIN Y ,et al . The phase holdups in a gas-liquid-solid circulating fluidized bed[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995,58(3): 259-264. |
11 | LIANG W G , WU Q W , YU Z Q ,et al . Hydrodynamics of a gas-liquid-solid three phase circulating fluidized be[J]. Canadian Journal of Chemical Engineering, 1995,73(5): 656-661. |
12 | LIANG W G , WU Q W , YU Z Q ,et al . Flow regimes of the three-phase circulating fluidized bed[J]. AIChE Journal, 1995,41(2): 267-271. |
13 | LIANG W G , ZHU J X , JIN Y ,et al . Radial nonuniformity of flow structure in a liquid-solid circulating fluidized bed[J]. Chemical Engineering Science, 1996,51(10): 2001-2010. |
14 | LIANG W G , ZHANG S L , ZHU J X ,et al . Flow characteristics of the liquid-solid circulating fluidized bed[J]. Powder Technology, 1997,90(2): 95-102. |
15 | LIANG W G , ZHU J X . A core-annulus model for the radial flow structure in a liquid-solid circulating fluidized bed (LSCFB)[J]. Chemical Engineering Journal, 1997,68(1): 51-62. |
16 | LIANG W G , ZHU J X . Effect of radial flow nonuniformity on the alkylation reaction in a liquid-solid circulating fluidized bed (LSCFB) reactor[J]. Industrial & Engineering Chemistry Research, 1997,36(11): 4651-4658. |
17 | ZHENG Y , ZHU J X , WEN J ,et al . The axial hydrodynamic behavior in a liquid-solid circulating fluidized bed[J]. Canadian Journal of Chemical Engineering, 1999,77(2): 284-290. |
18 | ZHU J X , ZHENG Y , KARAMANEV D G ,et al . (Gas-) liquid-solid circulating fluidized beds and their potential applications to bioreactor engineering[J]. Canadian Journal of Chemical Engineering, 2000,78(1): 82-94. |
19 | ZHENG Y , ZHU J X . Overall pressure balance and system stability in a liquid-solid circulating fluidized bed[J]. Chemical Engineering Journal, 2000,79(2): 145-153. |
20 | ZHENG Y , ZHU J X . Microstructural aspects of the flow behaviour in a liquid-solids circulating fluidized bed[J]. Canadian Journal of Chemical Engineering, 2000,78(2): 75-81. |
21 | ZHENG Y , ZHU J X . The onset velocity of a liquid-solid circulating fluidized bed[J]. Powder Technology, 2001,114(3): 244-251. |
22 | ZHENG Y , ZHU J X , MARWAHA N S ,et al . Radial solids flow structure in a liquid-solids circulating fluidized bed[J]. Chemical Engineering Journal, 2002,88(1): 141-150. |
23 | ZHENG Y , ZHU J X . Radial distribution of liquid velocity in a liquid-solids circulating fluidized bed[J/OL]. International Journal of Chemical Reactor Engineering, 2003. . |
24 | ZHENG Y , ZHU J , WUSHOUER A . Transition from low velocity to high velocity in a three-phase fluidized bed[J]. Chemical Engineering & Technology, 2005,28(9): 1010-1015. / |
25 | GRACE J R . Contacting modes and behaviour classification of gas-solid and other two-phase suspensions[J]. The Canadian Journal of Chemical Engineering, 1986,64(3): 353-363. |
26 | ZHANG W , TUNG Y , JOHNSSON F . Radial voidage profiles in fast fluidized beds of different diameters[J]. Chemical Engineering Science, 1991,46(12): 3045-3052. |
27 | ATTA A , RAZZAK S A , NIGAM K D P ,et al . (Gas)-liquid-solid circulating fluidized bed reactors: characteristics and applications[J]. Industrial & Engineering Chemistry Research, 2009,48(17): 7876-7892. |
28 | 王文琼,张兰威,易华西 . 干酪乳清蛋白膜回收技术及膜污染问题研究进展[J]. 食品与发酵工业, 2017(2): 265-273. |
WANG W Q , ZHANG L W , YI H X . Cheese whey protein membrane recycling technology and membrane fouling problem[J]. Food and Fermentation Industries, 2017(2): 265-273. | |
29 | DRAEGER N M , CHASE H A . Liquid fluidized bed adsorption of protein in the presence of cells[J]. Bioseparation, 1991,2(2): 67-80. |
30 | LAN Q , ZHU J X , BASSI A S ,et al . Continuous protein recovery using a liquid-solid circulating fluidized bed ion exchange system: modelling and experimental studies[J]. The Canadian Journal of Chemical Engineering, 2000,78(5): 858-866. |
31 | LAN Q , BASSI A S , ZHU J ,et al . A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents[J]. Chemical Engineering Journal, 2001,81(1): 179-186. |
32 | LAN Q , BASSI A , ZHU J X ,et al . Continuous protein recovery from whey using liquid-solid circulating fluidized bed ion-exchange extraction[J]. Biotechnology & Bioengineering, 2002,78(2): 157-163. |
33 | LAN Q , BASSI A S , ZHU J X ,et al . Continuous protein recovery with a liquid-solid circulating fluidized-bed ion exchanger[J]. AIChE Journal, 2002,48(2): 252-261. |
34 | BASSI A S , ZHU J X , LAN Q D ,et al . Continuous ion exchange using a liquid-solid circulating fluidized bed: CA2322348C[P]. 2002-03-29. |
35 | GÓMEZ J L , BÓDALO A , GÓMEZ E ,et al . Immobilization of peroxidases on glass beads: an improved alternative for phenol removal[J]. Enzyme and Microbial Technology, 2006,39(5): 1016-1022. |
36 | ERHAN E , KESKINLER B , AKAY G ,et al . Removal of phenol from water by membrane-immobilized enzymes: Part Ⅰ. Dead-end filtration[J]. Journal of Membrane Science, 2002,206(1): 361-373. |
37 | SCHMID A , DORDICK J S , HAUER B ,et al . Industrial biocatalysis today and tomorrow[J]. Nature, 2001,409(6817): 258-268. |
38 | NEDOVIĆ V A , OBRADOVIĆ B , LESKOŠEK-UKALOVIĆ I ,et al . Electrostatic generation of alginate microbeads loaded with brewing yeast[J]. Process Biochemistry, 2001,37(1): 17-22. |
39 | SMITH K , SILVERNAIL N J , RODGERS K R ,et al . Sol-gel encapsulated horseradish peroxidase: a catalytic material for peroxidation[J]. Journal of the American Chemical Society, 2002,124(16): 4247-4252. |
40 | TRIVEDI U J , BASSI A S , ZHU J . Investigation of phenol removal using sol-gel/alginate immobilized soybean seed hull peroxidase[J]. The Canadian Journal of Chemical Engineering, 2006,84(2): 239-247. |
41 | TRIVEDI U J , BASSI A , ZHU J X . Continuous enzymatic polymerization of phenol in a liquid-solid circulating fluidized bed[J]. Powder Technology, 2006,169(2): 61-70. |
42 | 孙启梅, 乔凯, 王领民, 等 . 发酵液中乳酸的分离提取研究进展[J]. 化工进展, 2016, 35(9): 2656-2662. |
SUN Q M , QIAO K , WANG L M ,et al . Advances in separation and purification of lactic acid from fermentation broths[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2656-2662. | |
43 | 李卫星,邢卫红 . 发酵法乳酸精制技术研究进展[J]. 化工进展, 2009, 28(3): 491-495. |
LI W X , XING W H . Advances in refinement of lactic acid from fermentation broths[J]. Chemical Industry and Engineering Progress, 2009, 28(3): 491-495. | |
44 | 姜绍通, 于力涛, 李兴江,等 . 连续离子交换法分离L-乳酸的工艺设计及优化[J]. 食品科学, 2012(12): 69-74. |
JIANG S T , YU L T , LI X J ,et al . Process design and optimization for separation of L-lactic acid by continuous ion exchange[J]. Food Science, 2012(12): 69-74. | |
45 | 崔永涛 . 新型连续离子交换法转化维生素C钠的工艺开发[D]. 天津: 天津大学, 2003. |
CUI Y T . Development of the VcNa conversion process using new continuous ion exchange technology[D]. Tianjin: Tianjin University,2003. | |
46 | PATEL M , BASSI A S , ZHU J , et al . Investigation of a dual-particle liquid-solid circulating fluidized bed bioreactor for extractive fermentation of lactic acid[J]. Biotechnology Progress, 2008,24(4): 821-831. |
47 | 梅特卡夫和埃迪公司 . 废水工程: 处理及回用[M]. 北京: 化学工业出版社, 2004. |
Metcalf and Eddy Inc . Wastewater engineering: treatment and reuse[M]. Beijing: Chemical Industry Press,2004. | |
48 | LAW A , TANG C Y . Industrial water treatment and industrial marine outfalls: achieving the right balance[J]. Frontiers of Chemical Science and Engineering, 2016,10(4): 472-479. |
49 | CUI Y , NAKHLA G , ZHU J ,et al . Simultaneous carbon and nitrogen removal in anoxic-aerobic circulating fluidized bed biological reactor (CFBBR)[J]. Environmental Technology, 2004,25(6): 699-712. |
50 | PATEL A , ZHU J , NAKHLA G . Simultaneous carbon,nitrogen and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor[J]. Chemosphere, 2006,65(7): 1103-1112. |
51 | NELSON M J , NAKHLA G , ZHU J . Fluidized-bed bioreactor applications for biological wastewater treatment: a review of research and developments[J]. Engineering, 2017,3(3): 330-342. |
52 | CHOWDHURY N , NAKHLA G , ZHU J . Load maximization of a liquid-solid circulating fluidized bed bioreactor for nitrogen removal from synthetic municipal wastewater[J]. Chemosphere, 2008,71(5): 807-815. |
53 | ANDALIB M , NAKHLA G , ZHU J . High rate biological nutrient removal from high strength wastewater using anaerobic-circulating fluidized bed bioreactor (A-CFBBR)[J]. Bioresource Technology, 2012,118: 526-535. |
54 | ANDALIB M , NAKHLA G , SEN D ,et al . Evaluation of biological nutrient removal from wastewater by twin circulating fluidized bed bioreactor (TCFBBR) using a predictive fluidization model and AQUIFAS APP[J]. Bioresource Technology, 2011,102(3): 2400-2410. |
55 | ANDALIB M , NAKHLA G , ZHU J . Dynamic testing of the twin circulating fluidized bed bioreactor (TCFBBR) for nutrient removal from municipal wastewater[J]. Chemical Engineering Journal, 2010,162(2): 616-625. |
56 | NAKHLA G , ZHU J X , CUI Y B . Liquid-solid circulating fluidized bed waste water treatment system for simultaneous carbon,nitrogen and phosphorus removal: US7261811B2[P]. 2007-08-28. |
57 | ZHU J X , NAKHLA G , CUI Y B . Liquid-solid fluidized bed waste water treatment system for simultaneous carbon,nitrogen and phosphorous removal:US7736513B2[P]. 2010-06-15. |
58 | 李海滨, 祝京旭, 赵增立, 等 . 一种小型流化床污水处理系统及其运行方法: CN104193005B[P]. 2016-04-20. |
LI H B , ZHU J X , ZHAO Z L ,et al . A small fluidized bed system and method of operation for wastewater treatment:CN104193005B[P]. 2016-04-20. | |
59 | CHOWDHURY N , ZHU J , NAKHLA G ,et al . A novel liquid-solid circulating fluidized-bed bioreactor for biological nutrient removal from municipal wastewater[J]. Chemical Engineering & Technology, 2009,32(3): 364-372. |
60 | ANDALIB M , NAKHLA G , ZHU J . Biological nutrient removal using a novel laboratory-scale twin fluidized-bed bioreactor[J]. Chemical Engineering & Technology, 2010,33(7): 1125-1136. |
61 | CHOWDHURY N , NAKHLA G , ZHU J ,et al . Pilot-scale experience with biological nutrient removal and biomass yield reduction in a liquid-solid circulating fluidized bed bioreactor[J]. Water Environment Research, 2010,82(9): 772-781. |
62 | ELDYASTI A , CHOWDHURY N , NAKHLA G ,et al . Biological nutrient removal from leachate using a pilot liquid-solid circulating fluidized bed bioreactor (LSCFB)[J]. Journal of Hazardous Materials, 2010,181(1/2/3): 289-297. |
63 | CHOWDHURY N , ZHU J , NAKHLA G . Effect of dynamic loading on biological nutrient removal in a pilot-scale liquid-solid circulating fluidized bed bioreactor[J]. Journal of Environmental Engineering—ASCE, 2010,136(9): 906-913. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[4] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[5] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[6] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[7] | ZHANG Han, ZHANG Xiaojing, MA Bingbing, NAI Can, LIU Shuoshuo, MA Yongpeng, SONG Yali. Feasibility of starting anammox process with municipal waste sludge as seed sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1080-1088. |
[8] | YING Luyao, WANG Rongchang. Removal pathways of antibiotic pollutants by bacterial-algal consortium and its stress response mechanisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 469-479. |
[9] | MA Yunfei, WANG Jianbing, JIA Chaomin, XING Yixin, KE Shu, ZHANG Xian. Recent progress of kinetics model and reactor modeling of ozonation [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 556-570. |
[10] | XU Yabing, WANG Baoshan, WANG Guangzong, ZHANG Yang. Degradation of refractory organics in the pharmaceutical wastewater by bioelectrochemical system [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5055-5064. |
[11] | ZHANG Lizhu, WANG Huan, LI Qiong, YANG Dongjie. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744. |
[12] | LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248. |
[13] | LI Haitao, WANG Dong. Practice and prospect of purified terephthalic acid production wastewater treatment and CO2co-utilization technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1132-1135. |
[14] | WANG Na, SONG Xiulan, ZAN Botao. Synthesis of PHA by mixed microorganisms using simulative hydrolysate liquid from the excess sludge by APG combined with FNA pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1017-1024. |
[15] | CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |