[1] YU T, HAO T, FAN D, et al. Recent NH3-SCR mechanism research over Cu/SAPO-34 catalyst[J]. Journal of Physical Chemistry C, 2014, 118(13):6565-6575.
[2] SIERRA-PEREIRA C A. Reduction of NO with CO on CuO or Fe2O3, catalysts supported on TiO2, in the presence of O2, SO2, and water steam[J]. Fuel, 2014, 118(1):137-147.
[3] MRAD R, AISSAT A, COUSIN R, et al. Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR)[J]. Applied Catalysis A:General, 2015, 504:542-548.
[4] 高珊. 铈钒锆固体超强酸催化剂的脱硝活性及其抗中毒能力[D]. 杭州:浙江大学, 2016. GAO S. Cerium and vanadium supported on sulfated zirconia as a solid superacid catalyst with enhanced deNOx activity and poison resistance[D]. Hangzhou:Zhejiang University, 2016.
[5] 杜云贵, 杨佳, 沈世玉,等. 工业钛钨粉制备选择性催化还原催化剂的对比研究[J]. 化工进展, 2014, 33(4):935-940. DU Y G, YANG J, SHEN S Y, et al. Comparative study on SCR catalysts prepared from industrial titanium tungsten powder[J]. Chemical Industry and Engineering Progress, 2014, 33(4):935-940.
[6] LIU F, SHAN W, SHI X, et al. Research progress in vanadium-free catalysts for the selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis, 2011, 32(7):1113-1128.
[7] PEÑA D A, UPHADE B S, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:Ⅰ. Evaluation and characterization of first row transition metals[J]. Journal of Catalysis, 2004, 221(2):421-431.
[8] RAMIS G, YI L, BUSCA G, et al. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. Journal of Catalysis, 1995, 157(2):523-535.
[9] 李云涛, 钟秦. 低温NH3-SCR反应机理及动力学研究进展[J]. 化学进展, 2009, 21(6):1094-1100. Li Y T, ZHONG Q. Recent Advances in mechanisms and kinetics of low-temperature selective catalytic reduction of NOx with NH3[J]. Progress in Chemistry, 2009, 21(6):1094-1100.
[10] YU Y, CHEN J, WANG J, et al. Performances of CuSO4/TiO2, catalysts in selective catalytic reduction of NOx, by NH3[J]. Chinese Journal of Catalysis, 2016, 37(2):281-287.
[11] 黄海凤, 金丽丽, 张宏华,等. 高抗硫性的铜钒钛低温SCR脱硝催化剂的制备表征及催化活性[J]. 高校化学工程学报, 2013, 27(4):721-728. HUANG H F, JIN L L, ZHANG H H, et al. Preparation and characterization of Cu-V/TiO2 catalysts with strong resistance to SO2 for low-temperature SCR of NOx[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(4):721-728.
[12] XIE G, LIU Z, ZHU Z, et al. Simultaneous removal of SO2, and NOx, from flue gas using a CuO/Al2O3, catalyst sorbent:Ⅰ. Deactivation of SCR activity by SO2, at low temperatures[J]. Journal of Catalysis, 2004, 224(1):36-41.
[13] BOUKHA Z, TORRE U D L, PEREDA-AYO B, et al. Catalytic properties of CuO/Al2O3-based microreactors in SCR of NOx, with NH3[J]. Topics in Catalysis, 2016, 59(10/12):1002-1007.
[14] BOYANO A, GÁLVEZ M E, MOLINER R, et al. Carbon-based catalytic briquettes for the reduction of NO:effect of H2SO4, and HNO3 carbon support treatment[J]. Fuel, 2008, 87(10/11):2058-2068.
[15] ZHU Z, LIU Z, LIU S, et al. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures[J]. Applied Catalysis B:Environmental, 2000, 26(1):25-35.
[16] MA Z, YANG H, QIAN L, et al. Catalytic reduction of NO by NH3 over Fe-Cu-Ox/CNTs-TiO2 composites at low temperature[J]. Applied Catalysis A:General, 2012, 427/428(10):43-48.
[17] 任雯, 赵博, 禚玉群, 等. NaY分子筛担载FeSO4催化剂用于氨气还原NOx的性能[J]. 化工学报, 2011, 62(2):362-368. REN W, ZHAO B, ZHUO Y Q, et al. Capability of molecular sieve-supported FeSO4 catalyst for selective catalytic reduction of NOx[J]. CIESC Journal, 2011, 62(2):362-368.
[18] IWAMOTO M, FURUKAWA H, MINE Y, et al. Copper(Ⅱ) ionexchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide[J]. Journal of the Chemical Society Chemical Communications, 1986, 16(16):1272-1273.
[19] PANAHI P N, SALARI D, NIAEI A, et al. NO reduction over nanostructure M-Cu/ZSM-5(M:Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM[J]. Journal of Industrial & Engineering Chemistry, 2013, 19(6):1793-1799.
[20] FENG B, SONG C, LÜ G, et al. Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts[J]. Applied Catalysis B:Environmental, 2014, 150/151(11):532-543.
[21] TAO Z, JIAN L, WANG D, et al. Selective catalytic reduction of NO with NH3, over HZSM-5-supported Fe-Cu nanocomposite catalysts:the Fe-Cu bimetallic effect[J]. Applied Catalysis B:Environmental, 2014, 148/149(6):520-531.
[22] 陈影, 高志娟, 常丽萍, 等. Cu-SAPO-34/堇青石原位制备条件中硅铝比的优化及其对NOx催化还原性能的影响[J]. 化工进展, 2013, 32(s1):174-178. CHEN Y, GAO Z J, CHENG L P, et al. Optimization of different SiO2/Al2O3 of in situ synthesis of Cu-SAPO-34/cordierite and its performance for catalytic reduction of NOx[J]. Chemical Industry and Engineering Progress,2013, 32(s1):174-178.
[23] DONG X, WANG J, ZHAO H, et al. The promotion effect of CeOx on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia[J]. Catalysis Today, 2015, 258(3):28-34.
[24] XIE L, LIU F, REN L, et al. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Environmental Science & Technology, 2014, 48(1):566-572.
[25] 赵文雅, 李永红, 刘小娇, 等. Fe改性Cu-SSZ-13的方法对催化剂NH3-SCR脱硝性能的影响[J]. 化工进展, 2016, 35(12):3898-3906. ZHAO W Y, LI Y H, LIU X J, et al. Effect of preparation methods on de-NOx performance of Fe/Cu-SSZ-13 catalyst for NH3-SCR[J]. Chemical Industry and Engineering Progress, 2016, 35(12):3898-3906.
[26] XIE L, LIU F, SHI X, et al. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B:Environmental, 2015, 179(1):206-212.
[27] WU Z, JIANG B, LIU Y, et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology, 2007, 41(16):5812-5817.
[28] REICHE M A, HUG P, BAIKER A. Effect of grafting sequence on the behavior of titania-supported V2O5-WO3, catalysts in the selective reduction of NO by NH3[J]. Journal of Catalysis, 2000, 192(2):400-411.
[29] SI Z, DUAN W, WU X, et al. Structure, acidity and activity of CuOx/WOx-ZrO2, catalyst for selective catalytic reduction of NO by NH3[J]. Journal of Catalysis, 2010, 271(1):43-51.
[30] WANG D, ZHANG L Z, LI J H, et al. NH3-SCR over Cu/SAPO-34-Zeolite acidity and Cu structure changes as a function of Cu loading[J]. Catalysis Today, 2014, 231:64-74.
[31] MA L, CHENG Y, CAVATAIO G, et al. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx, over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B:Environmental, 2014, 156/157:428-437.
[32] 江博琼. Mn/TiO2系列低温SCR脱硝催化剂制备及其反应机理研究[D]. 杭州:浙江大学, 2008. JIANG B Q. The preparation of Mn/TiO2 series low-temperature SCR DeNOx catalysts and its reaction mechanism[D]. Hangzhou:Zhejiang University, 2008.
[33] KONDURU M V, CHUANG S S C. Dynamics of NO and N2O decomposition over Cu-ZSM-5 under transient reducing and oxidizing conditions[J]. Journal of Catalysis, 2000, 196(2):271-286.
[34] MAHESH V, KONDURU, STEVEN S C C. Active and spectator adsorbates during NO decomposition over Cu-ZSM-5:transient IR, site-poisoning, and site-promotion studies[J]. Journal of Catalysis, 1999, 187(2):436-452.
[35] KAPTEIJN F, MARBÁN G, RODRIGUEZ-MIRASOL J, et al. Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts[J]. Journal of Catalysis, 1997, 167(1):256-265.
[36] KOMATSU T, NUNOKAWA M, MOON I S, et al. Kinetic studies of reduction of nitric oxide with ammonia on Cu2+-exchanged zeolites[J]. Cheminform, 1994, 148(2):427-437.
[37] LAI S, MENG D, ZHAN W, et al. The promotional role of Ce in Cu/ZSM-5 and in situ surface reaction for selective catalytic reduction of NOx with NH3[J]. RSC Advances, 2015, 5(110):90235-90244.
[38] MAIBÁN G, FUERTES A B. Kinetics of the low-temperature selective catalytic reduction of NO with NH3, over activated carbon fiber composite-supported iron oxides[J]. Catalysis Letters, 2002, 84(1/2):13-19.
[39] ZHANG W, LU C, DONG P F, et al. Fractal reconstruction of microscopic rough surface for soot layer during ceramic filtration based on Weierstrass-Mandelbrot function[J]. Industrial & Engineering Chemistry Research, 2018,57(11):4033-4044.
[40] 王燕彩. 酸或稀土元素(Ce、La)改性对Cu-SAPO-34上NH3选择性催化还原NOx抗水热性能的影响[D]. 昆明:昆明理工大学, 2016. WANG Y C. The influence of acid/rare earth elements(Ce, La)-modification on the hydrothermal stability of Cu-SAPO-34 for NH3-SCR[D]. Kunming:Kunming University of Science and Technology, 2016.
[41] ZHEN P Z, ZHEN Y L, HONG X N, et al. Mechanism of SO2 promotion for NO reduction with NH3 over activaed carbon-supported vanadium oxide catalyst[J]. Journal of Catalysis, 2001, 197(1):6-16.
[42] ZHANG L, WANG D, LIU Y, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B:Environmental, 2014, 156/157(9):371-377.
[43] JANGJOU Y, WANG D, KUMAR A, et al. SO2 poisoning of the NH3-SCR reaction over Cu-SAPO-34:impact of ammonium sulfate versus other S-containing species[J]. ACS Catalysis, 2016, 6(10):6612-6622.
[44] CHEN J P, YANG R T. Mechanism of poisoning of the V2O5/TiO2, catalyst for the reduction of NO by NH3[J]. Journal of Catalysis, 1990, 125(2):411-420.
[45] LISI L, LASORELLA G, MALLOGGI S, et al. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Applied Catalysis B:Environmental, 2004, 50(4):251-258.
[46] BENSON S A, LAUMB J D, CROCKER C R, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Processing Technology, 2005, 86(5):577-613.
[47] 钱宇, 杨思宇, 贾小平, 等. 能源和化工系统的全生命周期评价和可持续性研究[J]. 化工学报, 2013, 64(1):133-147. QIAN Y, YANG S Y, JIA X P, et al. Life cycle assessment and sustainability of energy and chemical processes[J]. CIESC Journal, 2013, 64(1):133-147.
[48] 周建国, 周春静, 赵毅. 基于生命周期评价的选择性催化还原脱硝技术还原剂的选择研究[J]. 环境污染与防治, 2010, 32(3):102-104. ZHOU J G, ZHOU C J, ZHAO Y. Selection of reducing agents based on life cycle assessment in selective catalytic reduction denitration technology[J]. Environmental Pollution & Control, 2010, 32(3):102-104.
[49] 洪巧巧. 燃煤电厂烟气脱硫脱硝除尘技术生命周期评价[D]. 杭州:浙江大学, 2015. HONG Q Q. LCA of desulfurization, denitration and dedusting technologies in coal-fired power plants[D]. Hangzhou:Zhejiang University, 2015.
[50] 王鲁元, 程星星, 王志强, 等. 低温催化脱硝技术的研究进展[J]. 化工进展, 2016, 35(7):2222-2235. WANG L Y, CHENG X X, WANG Z Q, et al. Recent research progress in catalytic reduction of NOx at low temperature[J]. Chemical Industry and Engineering Progress,2016, 35(7):2222-2235. |