[1] SONG G C, LI Y X, WANG W C, et al. Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J]. Chemical Engineering Science, 2017, 158:480-489.
[2] SLOAN E D. Natural gas hydrates in flow assurance[M]. New York:Elsevier Science Ltd., 2010:1-36.
[3] 魏丁,王武昌,李玉星,等. 管道Cl3F水合物浆流动特性的数值模拟[J]. 油气储运, 2016(8):828-832. WEI D, WANG W C, LI Y X, et al. Numerical simulation on flow behaviors of Cl3F hydrate slurry in pipelines[J]. Oil & Gas Storage and Transportation, 2016(8):828-832.
[4] 江国业,王晓娅,孙鹏. 基于正交试验设计的水合物浆液流动特性数值模拟[J]. 科技导报, 2014, 32(13):23-27. JIANG G Y, WANG X Y, SUN P. Numerical simulation of hydrate slurry flow based on orthogonal design[J]. Science & Technology Review, 2014, 32(13):23-27.
[5] 李莹玉,江国业,陈世一. 基于CFD的集输管道内水合物聚集行为仿真分析[J]. 计算机应用与软件, 2013, 30(7):101-103. LI Y Y, JIANG G Y, CHEN S Y. Simulation analysis of hydrate congregation in gathering and transportation pipeline based on CFD[J]. Computer Applications and Software, 2013, 30(7):101-103.
[6] MUHLE K. Flock stability in laminar and turbulent flow[M]//Coagulation and flocculation:theory and applications. New York:Marcel Dekker, 1996.
[7] CAMARGO R, PALERMO T. Rheological properties of hydrate suspensions in an asphaltenic crude oil[C]//International Conference on Gas Hydrates, Yokohama, Japan, 2002.
[8] 陈鹏,刘福旺,李玉星,等. 水合物浆液流动特性数值模拟[J]. 油气储运, 2014, 33(2):160-164. CHEN P, LIU F W, LI Y X, et al. Numerical simulation of hydrate slurry flow behavior[J]. Oil & Gas Storage and Transportation, 2014, 33(2):160-164.
[9] FATNES E D. Numerical simulations of the flow and plugging behavior of hydrate particles[D]. Bergen:University of Bergen, 2010.
[10] BALAKIN B V, HOFFMANN A C, KOSINSKI P. Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow[J]. Chemical Engineering Science, 2011, 66(4):755-765.
[11] BALAKIN B V, HOFFMANN A C, KOSINSKI P. Population balance model for nucleation, growth, aggregation, and breakage of hydrate particles in turbulent flow[J]. AIChE Journal, 2010, 56(8):2052-2062.
[12] DING J, GIDASPOW D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4):523-538.
[13] 王继红. 冰浆的管道输送热流动特性[D]. 大连:大连理工大学, 2013. WANG J H. Thermo-flow characteristics of ice slurry in pipelines[J]. Dalian:Dalian University of Technology, 2013.
[14] PABST W. Fundamental considerations on suspension rheology[J]. Ceraming-Siliikaty, 2004, 48(1):6-13.
[15] 赵鹏飞, 王武昌, 李玉星, 等. 管道内水合物浆流动的数值模型[J]. 油气储运, 2016, 35(3):272-277. ZHAO P F, WANG W C, LI Y X, et al. Numerical model of hydrate slurry flow in pipeline[J]. Oil & Gas Storage and Transportation, 2016, 35(3):272-277.
[16] HULBURT H M, KATZ S. Some problems in particle technology:a statistical mechanical formulation[J]. Chemical Engineering Science, 1964, 19(8):555-574.
[17] CAMP T R, STEIN P C. Velocity gradients and internal work in fluid motion[J]. Journal of the Boston Society of Civil Engineers, 1943, 30(4):219-237.
[18] SAFFMAN P G, TURNER J S. On the collision of drops in turbulent clouds[J]. Journal of Fluid Mechanics, 1956, 1(1):16-30.
[19] ABRAHAMSON J. Collision rates of small particles in a vigorously turbulent fluid[J]. Chemical Engineering Science, 1975, 30(11):1371-1379.
[20] VEN T G M V D, MASON S G. The microrheology of colloidal dispersions Ⅶ. Orthokinetic doublet formation of spheres[J]. Colloid and Polymer Science, 1977, 255(5):468-479.
[21] ZHANG J J, LI X Y. Modeling particle-size distribution dynamics in a flocculation system[J]. AIChE Journal, 2003, 49(7):1870-1882.
[22] 李振亮. 基于群体平衡的活性污泥絮凝动力学[D]. 重庆:重庆大学, 2014. LI Z L. Flocculation dynamics of activated sludge based on population balance model[D]. Chongqing:Chongqing University, 2014.
[23] LI X Y, LOGAN B E. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid[J]. Environmental Science & Technology, 1997, 31(4):1237-1242.
[24] BALAKIN B V, PEDERSEN H, KILINC Z, et al. Turbulent flow of freon R11 hydrate slurry[J]. Journal of Petroleum Science & Engineering, 2010, 70(3/4):177-182.
[25] CLARKE M A, BISHNOI P R. Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis[J]. Chemical Engineering Science, 2004, 59(14):2983-2993. |