[1] 刘永健,何畅,冯霄,等. 煤制合成天然气装置能耗分析与节能途径探讨[J].化工进展, 2013, 32(1):48-53. LIU Y J, HE C, FENG X, et al. Analysis of energy consumption and energy saving approach in a coal to SNG plant[J]. Chemical Industry and Engineering Progress, 2013, 32(1):48-53.
[2] LI H, YANG S, ZHANG J, et al. Analysis of rationality of coal-based synthetic natural gas(SNG) production in China[J]. Energy Policy, 2014, 71(3):180-188.
[3] YANG C J, JACKSON R B. China's synthetic natural gas revolution[J]. Nature Climate Change, 2013, 3(10):852-854.
[4] JEONG D W, JANG W J, SHIM J O, et al. Optimization of a highly active nano-sized Pt/CeO2, catalyst via Ce(OH)CO3, for the water-gas shift reaction[J]. Renewable Energy, 2015, 79:78-84.
[5] YANG L F, NING P, TIAN S L, et al. Thermodynamic analysis of H2S poisoning mechanism of copper-based catalyst for low temperature water-gas shift reaction[J]. Chemical Engineering, 2010, 38(6):79-82.
[6] THOUCHPRASITCHAI N. Statistical optimization by response surface methodology for water-gas shift reaction in a H2-rich stream over Cu-Zn-Fe composite-oxide catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(4):632-639.
[7] FRANCESCONI J A, MUSSATI M C, AGUIRRE P A. Analysis of design variables for water-gas-shift reactors by model-based optimization[J]. Journal of Power Sources, 2007, 173(1):467-477.
[8] BAIER T. Temperature control of the water gas shift reaction in micro-structured reactors[J]. Chemical Engineering Science, 2007, 62(17):4602-4611.
[9] 张欣欣. 水煤气变换工段的模拟与仿真[D]. 西安:西安科技大学, 2015. ZHANG X X. Modeling and simulation of water gas shift section[D]. Xi'an:Xi'an University of Science and Technology, 2015.
[10] 路海彬. 变换工艺技术改造模拟与优化[D]. 上海:华东理工大学, 2013. LU H B. Simulation and optimization of technological transformation for shift process[D]. Shanghai:East China University of Science and Technology, 2013.
[11] LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5):745-763.
[12] LI S, JI X Z, ZHANG X S, et al. Coal to SNG:technical progress, modeling and system optimization through exergy analysis[J]. Applied Energy, 2014, 136:98-109.
[13] YU B Y, CHIEN I. Design and economic evaluation of a coal-to-synthetic natural gas process[J]. Industrial & Engineering Chemistry Research, 2015, 54(8):2339-2352.
[14] BASSANO C, DEIANA P, PACETTI L, et al. Integration of SNG plants with carbon capture and storage technologies modeling[J]. Fuel, 2015, 161:355-363.
[15] WANG H F, LIAN Y X, ZHANG Q, et al. MgO-Al2O3 mixed oxides-supported Co-Mo-based catalysts for high-temperature water-gas shift reaction[J]. Catalysis Letters, 2008, 126(1/2):100-105.
[16] TONKOVICH A Y, ZILKA J L, LAMONT M J, et al. Microchannel reactors for fuel processing applications Ⅰ. Water gas shift reactor[J]. Chemical Engineering Science, 1998, 54:2947-2951.
[17] VAN DIJK H A J, BOON J, NYQVIST R N, et al. Development of a single stage heat integrated water-gas shift reactor for fuel processing[J]. Chemical Engineering Journal, 2010, 159(1/2/3):182-189.
[18] MAN Y, YANG S Y, QIAN Y. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission[J]. Energy Conversion & Management, 2016, 117:162-170.
[19] LIU L L, DU J, FENG X, et al. Direct heat exchanger network synthesis for batch process with cost targets[J]. Applied Thermal Engineering, 2011, 31(14):2665-2675.
[20] ROCCO M V, COLOMBO E, SCIUBBA E. Advances in exergy analysis:a novel assessment of the Extended Exergy Accounting method[J]. Applied Energy, 2014, 113(6):1405-1420.
[21] YANG Q C, QIAN Y, KRASLAWSKI A, et al. Advanced exergy analysis of an oil shale retorting process[J]. Applied Energy, 2016, 165:405-415.
[22] JIANG N, SHELLEY J D, DOYLE S, et al. Heat exchanger network retrofit with a fixed network structure[J]. Applied Energy, 2014, 127(6):25-33.
[23] XIANG D, QIAN Y, MAN Y, et al. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process[J]. Applied Energy, 2014, 113(1):639-647.
[24] ORHAN M F, DINCER I, NATERER G F. Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33(21):6006-6020. |