[1] DUAN J. Correction:mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction[J]. Chemical Communications,2016,52(35):6021-6021.
[2] QIAO S,MITCHELL R W,COULSON B,et al. Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production[J]. Carbon,2016,106:320-329.
[3] 潘登,王亚明,蒋丽红. 表面活性剂引导合成非硅基介孔材料的研究进展[J]. 化工进展,2016,35(8):2500-2506. PAN D,WANG Y M,JIANG L H,et al. Progress in surfactant synthesis of non-silica mesoporous materials[J]. Chemical Industry and Engineering Progress,2016,35(8):2500-2506.
[4] ARANAZ I,GUTIERREZ M C,FERRER M L,et al. Preparation of chitosan nanocomposites with a macroporous structure by unidirectional freezing and subsequent freeze-drying[J]. Marine Drugs,2014,12(11):5619-5642.
[5] LIU Y H,YUAN L L,YUE Y,et al. Fabrication of 3D foam-like hybrid carbon materials of porous carbon/graphene and its electrochemical performance[J]. Electrochim Acta,2016,196:153-161.
[6] SUNDARRAM S S,JIANG W,LI W. Fabrication of small pore size nickel foams using electroless plating of solid-state foamed immiscible polymer blends[J]. Journal of Manufacturing Science & Engineering,2014,136(2):549-558.
[7] KOVA?I? S,MATSKO N B,FERK G,et al. Macroporous poly(dicyclopentadiene) γ-Fe2O3/Fe3O4 nanocomposite foams by high internal phase emulsion templating[J]. Journal of Materials Chemistry A,2013,1(27):7971-7978.
[8] GUTIRREZ M C,FERRER M L,MONTE F D. Ice-templated materials:sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly[J]. Chemistry of Materials,2008,20(3):634-648.
[9] YANG J,YU J,HUANG Y. Recent developments in gelcasting of ceramics[J]. Journal of the European Ceramic Society,2011,31(14):2569-2591.
[10] EZEKWO G,TONG H M,GRYTE C C. On the mechanism of dewatering colloidal aqueous solutions by freeze-thaw processes[J]. Water Research,1980,14(8):1079-1088.
[11] TONG H M,NODA I,GRYTE C C. CPS 768 formation of anisotropic ice-agar composites by directional freezing[J]. Colloid & Polymer Science,1984,262(7):589-595.
[12] ADHAM A,TOM H,ROB C,et al. Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach[J]. Chemical Communications,2014,51(9):1717-1720.
[13] ZHANG H,NUNES P D A,WILHELM M,et al. Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting[J]. Journal of the European Ceramic Society,2016,36(1):51-58.
[14] DEVILLE S,SAIZ E,TOMSIA A P. Ice-templated porous alumina structures[J]. Acta Materialia,2007,55(6):1965-1974.
[15] LEI Q,ZHANG H. Controlled freezing and freeze drying:a versatile route for porous and micro-/nano-structured materials[J]. Journal of Chemical Technology & Biotechnology,2011,86(2):172-184.
[16] MINABERRY Y,JOBB GY M. Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying[J]. Chemistry of Materials,2011,23(9):2327-2332.
[17] PREISS A,SU B,COLLINS S,et al. Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting[J]. Journal of the European Ceramic Society,2012,32(8):1575-1583.
[18] HUNGER P M,DONIUS A E,WEGST U G K. Platelets self-assemble into porous nacre during freeze casting[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,19(4):87-93.
[19] DEVILLE S,MAIRE E,LASALLE A,et al. Influence of particle size on ice nucleation and growth during the ice-templating process[J]. Journal of the American Ceramic Society,2010,93(9):2507-2510.
[20] 王雅琴,王锦程,李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究[J]. 物理学报,2012,61(11):118103. WANG Y Q,WANG J C,LI J J. Phase filed modeling of the growth and competiton behavior of tilted dendrites in directional solidification[J]. Acta Phys. Sin.,2012,61(11):118103.
[21] NISHIHARA H,MUKAI S R,DAISUKE Y A,et al. Ordered macroporous silica by ice templating[J]. Chemistry of Materials,2005,17:683-689.
[22] NISHIHARA H,IWAMURA S,KYOTANI T. Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template[J]. Journal of Materials Chemistry,2008,18(31):3662-3670.
[23] GUTI RREZ M C,GARCACARVAJAL Z Y,JOBB G M,et al. Poly(vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release[J]. Advanced Functional Materials,2007,17(17):3505-3513.
[24] GUTI RREZ M C,JOBB GY M,FERRER M L,et al. Enzymatic synthesis of amorphous calcium phosphate-chitosan nanocomposites and their processing into hierarchical structures[J]. Chemistry of Materials,2008,20(1):11-13.
[25] YATSKOVSKAYA O V,BAKLANOVA O N,GULYAEVA T I,et al. The effect of polyethylene glycol molecular weight on characteristics of the porous structure of silica materials[J]. Protection of Metals & Physical Chemistry of Surfaces,2013,49(2):216-221.
[26] MUKAI S R,NISHIHARA H,TAMON H. Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation[J]. Microporous & Mesoporous Materials,2003,63(1/2/3):43-51.
[27] YOUNG E S,YOUNG J S,SEUNGYOUNG P,et al. An ice-templated,pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks[J]. Nanoscale,2014,6(16):9734-9741.
[28] BARROW,MICHAEL. Functional aligned porous materials via directional freezing and frozen UV initiated polymerization[D]. Livepool:University of Liverpool,2013.
[29] BAI H,POLINI A,DELATTRE B,et al. Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly[J]. Chemistry of Materials,2013,25(22):4551-4556.
[30] MUKAI S R,ONODERA K,YAMADA I. Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method[J]. Adsorption-Journal of the International Adsorption Society,2011,17(1):49-54.
[31] MUNCH E,SAIZ E,TOMSIA A P,et al. Architectural control of freeze-cast ceramics through additives and templating[J]. Journal of the American Ceramic Society,2009,92(7):1534-1539.
[32] QIAN L,AHMED A,FOSTER A,et al. Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing[J]. Journal of Materials Chemistry,2009,19:5212-5219.
[33] JAFARKHANI M,FAZLALI A,MOZTARZADEH F,et al. Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique[J]. Industrial & Engineering Chemistry Research,2012,51(27):9241-9249.
[34] WU X,LIU Y,LI X,et al. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method[J]. Acta Biomaterialia,2010,6(3):1167-1177.
[35] FU Y J,SHEN P J,HU Z J,et al. The role of CuO-TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting [J]. Journal of Porous Materials,2016,23(2):539-547.
[36] 邬泉周,李玉光. 三维有序大孔材料应用研究进展[J]. 化工进展,2008,27(3):358-363. WU Q Z,LI Y G. Progress of applications of three-dimensionally ordered macroporous materials[J]. Chemical Industry and Engineering Progress,2008,27(3):358-363.
[37] 许云强,周国伟,李艳敬. 有序介孔材料作为药物控释载体的研究进展[J]. 化工进展,2010,29(4):677-682. XU Y Q,ZHOU G W,LI Y J. Progress in ordered mesoporous materials as controlled drug release carriers[J]. Chemical Industry and Engineering Progress,2010,29(4):677-682.
[38] LIU L L,ZHI K W,LI P Z,et al. The influence of prefreezing temperature on pore structure in freeze-dried beta-TCP scaffolds[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine,2013,227(1):50-57.
[39] HOLLISTER S J,MADDOX R D,TABOAS J M. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints[J]. Biomaterials,2002,23(20):4095-4103.
[40] MA P X,ZHANG R. Microtubular architecture of biodegradable polymer scaffolds[J]. Journal of Biomedical Materials Research,2001,56(4):469-477.
[41] HU X,SHEN H,YANG F,et al. Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold[J]. Biomaterials,2008,29(21):3128-3136.
[42] JIANG L,YAN J,XUE R,et al. Hierarchically porous carbons with partially graphitized structures for high rate supercapacitors[J]. Journal of Materials Science,2014,49(1):363-370.
[43] GUTIÉRREZ M C,JOBB GY M,RAP N N,et al. A biocompatible bottom-up route for the preparation of hierarchical biohybrid materials[J]. Advanced Materials,2006,18(9):1137-1140.
[44] MUKAI S R,NISHIHARA H,SEIJI SHICHI A,et al. Preparation of porous TiO2 cryogel fibers through unidirectional freezing of hydrogel followed by freeze-drying[J]. Chemistry of Materials,2004,16(24):4987-4991.
[45] MOON J W,HWANG H J,AWANO M,et al. Preparation of NiO-YSZ tubular support with radially aligned pore channels[J]. Materials Letters,2003,57(8):1428-1434.
[46] LEE K H,LEE Y W,LEE S W,et al. Ice-templated self-assembly of VOPO4-graphene nanocomposites for vertically porous 3D supercapacitor electrodes[J]. Sci. Rep.,2015,5:13696. DOI: 10. 1038/srep13696.
[47] SYLVAIN D,EDUARDO S,TOMSIA A P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials,2006,27(32):5480-5489.
[48] PARK J E,TODO M. Development and characterization of reinforced poly(l-lactide)scaffolds for bone tissue engineering[J]. Journal of Materials Science:Materials in Medicine,2011,22(5):1171-1182.
[49] DOIPHODE N D,HUANG T,MING C L,et al. Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair[J]. Journal of Materials Science:Materials in Medicine,2011,22(3):515-523.
[50] ZHANG F,HE C,CAO L,et al. Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering[J]. International Journal of Biological Macromolecules,2011,48(3):474-481. |