Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (S1): 41-47.DOI: 10.16085/j.issn.1000-6613.2016.s1.008

• Chemical processes and equipments • Previous Articles     Next Articles

Numerical research on flow and heat transfer of the third fluid in cooling channel

QIN Mengxue, YANG Zhao   

  1. Key Laboratory of Medium-Low Temperature Energy Efficient Utilization of Ministry of Education, Tianjin University, Tianjin 300072, China
  • Received:2015-09-06 Revised:2015-10-24 Online:2016-07-08 Published:2016-06-30

第三流体在冷却通道内流动换热数值研究

秦梦雪, 杨昭   

  1. 天津大学机械工程学院, 中低温热能高效利用教育部重点实验室, 天津 300072
  • 通讯作者: 杨昭,教授,博士生导师。E-mail zhaoyang@tju.edu.cn。
  • 作者简介:秦梦雪(1989-),女,硕士研究生。
  • 基金资助:
    教育部高等学校博士学科点专项科研基金(20130032130006)及国家自然科学基金(51476111,51276124)项目。

Abstract: Aiming at a kind of liquid oxygen kerosene rocket engine cooling system, in this paper, numerical calculation and simulation of the third fluid cooling circle was proceeded.Based on the computational fluid dynamics(CFD), using three-dimensional fluid-structure coupling algorithm, the flow and heat transfer characteristics of the cooling channels was calculated and analyzed.The results showed that when the mass flow of coolant raises by about 0.01kg/s, the wall temperature of thrust chamber and throat temperature decreases by about 9K and 15K respectively, while the outlet dryness of the coolant decreases by about 0.011.the influence of inlet temperature was affected by the coolant flow, when the flow is smaller, the influence of the inlet temperature can be ignored, while the flow is larger, the dryness of coolant raises by about 0.009 with the increasing of inlet temperature by 10K.The pressure loss of cooling channel raised by 54kPa with the growing of coolant flow by 0.01kg/s, and it decreased by about 24kPa with the raising of inlet-temperature by 10K.Therefore, the best range of coolant flow and inlet-temperature was obtained:12-14.4kg/s and 300-350K respectively.

Key words: third fluid, cooling circle, flow and heat transfer, numerical simulation

摘要: 以某液氧煤油火箭发动机冷却系统设计计算为基础,基于计算流体力学(CFD),并采用三维流固耦合算法对以水作为第三流体的冷却循环系统进行了计算和分析。比较了冷却剂入口温度、流量和冷却通道内压力损失等因素对冷却通道内流动换热的影响。结果表明:冷却剂流量增加0.01kg/s,推力室壁面整体温度和喉部温度降低分别降低9K和15K左右,冷却剂出口干度降低0.011左右;当冷却剂流量较低时,入口温度变化对换热效果几乎无影响,而当冷却剂流量较高时,入口温度每增加10K,冷却剂出口干度增加0.009左右;冷却剂流量每增加0.01kg/s会导致冷却通道压力损失增加54kPa左右;入口温度每增加10K,冷却通道压力损失将减少24kPa左右。由此,本文得出冷却剂流量的最佳范围12~14.4kg/s,入口温度的范围为300~350K。

关键词: 第三流体, 冷却循环, 流动换热, 数值模拟

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd