[1] MORALES J, HUTCHESON R, NORADOUN C, et al. Hydrogenation of phenol by the Pd/Mg and Pd/Fe bimetallic systems under mild reaction conditions[J]. Industrial & Engineering Chemistry Research,2002,41(13):3071-3074. [2] TEE Y H,GRULKE E,BHATTACHARYYA D. Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water[J]. Industrial & Engineering Chemistry Research,2005, 44(18):7062-7070. [3] KHARISOV B I, DIAS H R, KHARISSOVA O V, et al. Iron-containing nanomaterials:synthesis, properties, and environmental applications[J]. RSC Advances,2012,2(25):9325-9358. [4] SUNKARA B,ZHAN J,HE J,et al. Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons[J]. ACS Applied Materials & Interfaces, 2010,2(10):2854-2862. [5] HOCH L B,MACK E J,HYDUTSKY B W,et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J]. Environmental Science & Technology,2008,42(7):2600-2605. [6] ZHAN J,ZHENG T,PIRINGER G,et al. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene[J]. Environmental Science & Technology,2008,42(23):8871-8876. [7] YAN W,HERZING A A,LI X Q,et al. Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity[J]. Environmental Science & Technology,2010,44(11):4288-4294. [8] HU C Y,LO S L,LIOU Y H,et al. Hexavalent chromium removal from near natural water by copper-iron bimetallic particles[J]. Water Research,2010,44(10):3101-3108. [9] TRIBUTSCH H,ROJAS-CHAPANA J. Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity[J]. Electrochimica Acta,2000,45(28):4705-4716. [10] LAI C H,LU M Y,CHEN L J. Metal sulfide nanostructures:synthesis,properties and applications in energy conversion and storage[J]. Journal of Materials Chemistry,2012,22(1):19-30. [11] MAJI S K,DUTTA A K,BISWAS P,et al. Synthesis and characterization of FeS nanoparticles obtained from a dithiocarboxylate precursor complex and their photocatalytic, electrocatalytic and biomimic peroxidase behavior[J]. Applied Catalysis A:General,2012,419/420:170-177. [12] 谢翼飞,李旭东,李福德. 生物硫铁纳米材料特性分析及其处理高浓度含铬废水研究[J]. 环境科学,2009(4):1060-1065. [13] KIM E J,KIM J H,AZAD A M,et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces,2011,3(5):1457-1462. [14] BUTLER E C,HAYES K F. Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide[J]. Environmental Science & Technology,1998,32(9):1276-1284. [15] 刘红华,邵鑫,李建波,等. 表面改性FeS纳米微粒的结构表征[J]. 微细加工技术,2005(2):77-80. [16] RAJAJAYAVEL S R, GHOSHAL S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron[J]. Water Research,2015,78:144-1453. [17] MA J,YANG M,YU F,et al. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution[J]. Journal of Colloid and Interface Science,2015,444:24-32. [18] CHIN P,DING J,YI J,et al. Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing[J]. Journal of Alloys and Compounds,2005,390(1):255-260. [19] XU C,ZENG Y,RUI X,et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance[J]. ACS Nano,2012,6(6):4713-4721. [20] XIONG Z,HE F,ZHAO D,et al. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles[J]. Water Research,2009,43(20):5171-5179. [21] 阎鑫,赵鹏,艾涛,苏兴华. 多硫化铁纳米材料的制备及在煤催化加氢热解中的研究[J]. 化学工业与工程技术,2014(3):1-3. [22] POL S V,POL V G,GEDANKEN A. Synthesis of ferromagnetic core-shell nanofibers[J]. The Journal of Physical Chemistry C,2007, 111(45):16781-16786. [23] FEI L,JIANG Y,XU Y,et al. A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance[J]. Journal of Power Sources,2014,265:1-5. [24] HU Y,ZHENG Z,JIA H,et al. Selective synthesis of FeS and FeS2 nanosheet films on iron substrates as novel photocathodes for tandem dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2008,112(33):13037-13042. [25] CHEN C F,BINH N T,CHEN C W,et al. Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron[J]. Journal of the Air & Waste Management Association,2014,65(4):375-383. [26] FU G, POLITY A, VOLBERS N, et al. Adjustable metal-semiconductor transition of FeS thin films by thermal annealing[J]. Applied Physics Letters,2006,89(26):262113. [27] MAJI S K,DUTTA A K,BISWAS P,et al. Nanocrystalline FeS thin film used as an anode in photo-electrochemical solar cell and as hydrogen peroxide sensor[J]. Sensors and Actuators B:Chemical, 2012,166-167:726-732. [28] BI Y,HYUN S P,KUKKADAPU R K,et al. Oxidative dissolution of UO2 in a simulated groundwater containing synthetic nanocrystalline mackinawite[J]. Geochimica et Cosmochimica Acta,2013,102:175-190. [29] SU Y, ADELEYE A S, KELLER A A, et al. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal[J]. Water Research,2015,74:47-57. [30] 陈仪取. 纳米FeS溶胶处理电镀废水的应用研究[J]. 工业水处理, 2012,32(11):68-71. [31] KIM E J,MURUGESAN K,KIM J H,et al. Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater:effects of water chemistry[J]. Industrial & Engineering Chemistry Research,2013,52(27):9343-9350. [32] PAKNIKAR K M,NAGPAL V,PETHKAR A V,et al. Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers[J]. Science and Technology of Advanced Materials,2005,6(3/4):370-374. [33] POURETEDAL H, TAVAKKOLI M. Photodegradation of para-nitrophenol catalyzed by Fe2O3/FeS nanocomposite[J]. Desalination and Water Treatment,2013,51(22/23/24):4744-4749. [34] FENG H,SI P Z,XIAO X F,et al. Large scale synthesis of FeS coated Fe nanoparticles as reusable magnetic photocatalysts[J]. Front Mater. Sci.,2013,7(3):308-311. [35] DZADE N,ROLDAN A,DE LEEUW N. Adsorption of methylamine on mackinawite (FeS) surfaces:a density functional theory study[J]. The Journal of Chemical Physics,2013,139(12):124708. [36] DAI Z,LIU S,BAO J,et al. Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing[J]. Chemistry——A European Journal,2009,15(17):4321-4326. [37] YANG K,YANG G,CHEN L, et al. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy[J]. Biomaterials,2015,38:1-9. [38] DI GIOVANNI C,WANG W A,NOWAK S,et al. Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water[J]. ACS Catalysis, 2014,4(2):681-687. [39] KIM B C,TAKADA K,OHTA N,et al. All solid state Li-ion secondary battery with FeS anode[J]. Solid State Ionics,2005,176(31/32/33/34):2383-2387. [40] BURA-NAKIĆ E,KRZNARIĆ D,JURAŠIN D,et al. Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters[J]. Analytica Chimica Acta,2007,594(1):44-51. [41] FAN D,ANITORI RP,TEBO B M,et al. Reductive sequestration of pertechnetate ((9)(9)TcO(4)(-)) by nano zerovalent iron (nZVI) transformed by abiotic sulfide[J]. Environmental Science & Technology,2013,47(10):5302-5310. [42] JEONG H Y,KLAUE B,BLUM J D,et al. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)[J]. Environmental Science & Technology,2007,41(22):7699-7705. [43] GORSKI C,SCHERER M. Fe2+ sorption at the Fe oxide-water interface:a revised conceptual framework[J]. Aquatic Redox Chemistry,2011,1071:477-517. [44] XU Y, SCHOONEN M A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist,2000,85(4):543-556. [45] DEKKERS M J,SCHOONEN M A. An electrokinetic study of synthetic greigite and pyrrhotite[J]. Geochimica et Cosmochimica Acta,1994,58(19):4147-4153. [46] GIASUDDIN A B,KANEL S R,CHOI H. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal[J]. Environmental Science & Technology,2007,41(6):2022-2027. [47] PECHER K, HADERLEIN S B, SCHWARZENBACH R P. Reduction of polyhalogenated methanes by surface-bound Fe (Ⅱ) in aqueous suspensions of iron oxides[J]. Environmental Science & Technology,2002,36(8):1734-1741. [48] TODA K,TANAKA T,TSUDA Y,et al. Sulfurized limonite as material for fast decomposition of organic compounds by heterogeneous Fenton reaction[J]. Journal of Hazardous Materials, 2014,278:426-432. [49] LI Y. Simulation-based evolutionary method in antenna design optimization[J]. Mathematical and Computer Modelling,2010,51(7/8):944-955. [50] BAE S,KIM D,LEE W. Degradation of diclofenac by pyrite catalyzed fenton oxidation[J]. Applied Catalysis B(Environmental), 2013,134/135:93-102. [51] GUO L,CHEN F,FAN X,et al. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol[J]. Applied Catalysis B(Environmental),2010, 96(1/2):162-168. [52] UMEBAYASHI T,YAMAKI T,TANAKA S,et al. Visible lightinduced degradation of methylene blue on S-doped TiO2[J]. Chemistry Letters,2003,32(4):330-331. [53] OHNO T,MITSUI T,MATSUMURA M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chemistry Letters, 2003,32(4):364-365. [54] OHNO T,AKIYOSHI M,UMEBAYASHI T,et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Applied Catalysis A(General),2004,265(1):115-121. [55] JIANG Z J,LIU C Y,SUN L W. Catalytic properties of silver nanoparticles supported on silica spheres[J]. The Journal of Physical Chemistry B,2005,109(5):1730-1735. [56] KIM E J,KIM J H,CHANG Y S,et al. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles[J]. Environmental Science & Technology,2014,48(7):4002-4011. [57] KIM E J,LE THANH T,KIM J H,et al. Synthesis of metal sulfide-coated iron nanoparticles with enhanced surface reactivity and biocompatibility[J]. RSC Advances,2013,3(16):5338. [58] LI X,LENHART J J,WALKER H W. Dissolution-accompanied aggregation kinetics of silver nanoparticles[J]. Langmuir,2010,26(22):16690-16698. [59] TURCIO ORTEGA D,FAN D,TRATNYEK PG,et al. Reactivity of Fe/FeS nanoparticles:electrolyte composition effects on corrosion electrochemistry[J]. Environmental Science & Technology,2012,46(22):12484-12492. [60] NURMI J T,BANDSTRA J Z,TRATNYEK P G. Packed powder electrodes for characterizing the reactivity of granular iron in borate solutions[J]. Journal of the Electrochemical Society,2004,151(6):B347-B353. [61] COUGHLIN B R,STONE A T. Nonreversible adsorption of divalent metal ions (MnII,CoII,NiII,CuII,and PbII) onto goethite:effects of acidification, FeII addition, and picolinic acid addition[J]. Environmental Science & Technology,1995,29(9):2445-2455. [62] ARAKAKI T,MORSE J W. Coprecipitation and adsorption of Mn (Ⅱ) with mackinawite (FeS) under conditions similar to those found in anoxic sediments[J]. Geochimica et Cosmochimica Acta,1993,57(1):9-14. [63] GUARDIA P,LABARTA A,BATLLE X. Tuning the size,the shape, and the magnetic properties of iron oxide nanoparticles[J]. The Journal of Physical Chemistry C,2010,115(2):390-396. [64] CHOI J,CHOI K,LEE W. Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1, 1-trichloroethane by FeS[J]. Journal of Hazardous Materials,2009, 162(2):1151-1158. [65] LIU T,RAO P,LO I M. Influences of humic acid,bicarbonate and calcium on Cr (Ⅵ) reductive removal by zero-valent iron[J]. Science of the Total Environment,2009,407(10):3407-3414. [66] LIU T,TSANG D C,LO I M. Chromium (Ⅵ) reduction kinetics by zero-valent iron in moderately hard water with humic acid:iron dissolution and humic acid adsorption[J]. Environmental Science & Technology,2008,42(6):2092-2098. |