[1] Aasberg-Petersen K, Hansen J, Christensen T, et al. Technologies for large-scale gas conversion[J]. Applied Catalysis A: General, 2001, 221(1-2): 379-387. [2] Ashcroft A, Cheetham A, Green M, et a1. Partial oxidation of methane to synthesis gas using carbon dioxide[J]. Nature, 1991, 352: 225-226. [3] Pakhare D, Spivey J. A review of dry(CO2)reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43: 7813-7837. [4] Wei J, Lglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts[J]. Journal of Catalysis, 2004, 224(2): 370-383. [5] Ferreira-Aparicio P, Rodriguez-Ramos I, Anderson J, et al. Mechanistic aspects of the dry reforming of methane over ruthenium catalysts[J]. Applied Catalysis A: General, 2000, 202(2): 183-196. [6] Bradford M, Vannice M. CO2 Reforming of CH4[J]. Catalysis Reviews: Science and Engineering, 1999, 41(1): 1-42. [7] Bradford M, Vannice M. CO2 reforming of CH4 over supported Pt catalysts[J]. Journal of Catalysis, 1998, 173(1): 157-171. [8] 路勇, 邓存, 丁雪加, 等. 担载型钴金属催化剂上甲烷与二氧化碳转化制合成气[J]. 催化学报, 1995(6): 447-452. [9] Campbell C, Peden C. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714. [10] Su Y, Pan K, Chang M. Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane[J]. International Journal of Hydrogen Energy, 2014, 39(10): 4917-4925. [11] Zhu J, Peng X, Yao L. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience[J]. International Journal of Hydrogen Energy, 2013, 38(1): 117-126. [12] Hu Y, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming[J]. Advances in Catalysis, 2004, 48: 297-345. [13] Alvero R, Odriozola J, Trillo J. et al. Lanthanide oxides: Preparation and ageing[J]. Journal of the Chemical Society, Dalton Transactions, 1984, 1: 87-91. [14] Kambolis A, Matralis H, Trovarelli A, et al. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane[J]. Applied Catalysis A: General, 2010, 377(1-2): 16-26. [15] Donphai W, Faungnawakij K, Chareonpanich M. Effect of Ni-CNTs/mesocellular silica composite catalysts on carbon dioxide reforming of methane[J]. Applied Catalysis A: General, 2014, 475: 16-26. [16] Ma Q, Wang D, Wu M, et al. Effect of catalytic site position: Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming[J]. Fuel, 2013, 108: 430-438. [17] Zhang M, Ji S, Hu L, et al. Structural characterization of highly stable Ni/SBA-15 catalyst and its catalytic performance for methane reforming with CO2[J]. Chinese Journal of Catalysis, 2006, 27(9): 777-781. [18] Liu D, Quek X, Wah H, et al. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts[J]. Catalysis Today, 2009, 148(3-4): 243-250. [19] Zhang S, Muratsugu S, Ishiguro N, et al. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane[J]. ACS Catalysis, 2013, 3(8): 1855-1864. [20] Xu L, Miao Z, Song H, et al. Significant roles of mesostructure and basic modifier for ordered mesoporous Ni/CaO-Al2O3 catalyst towards CO2 reforming of CH4[J]. Catalysis Science & Technology, 2014, 4: 1759-1770. [21] 付晓娟, 曾尚红, 苏海全. 用于甲烷二氧化碳重整新型催化材料的研究进展[J]. 化工进展, 2012, 31(s1): 168-175. [22] 李贺, 梁奇, 唐水花, 等. 预还原催化剂LaNiO3, La4Ni3O10, La3Ni2O7和La2NiO4催化分解CH4制碳纳米管的研究[J]. 化学学报, 2001, 59(8): 1236-1240. [23] Liu B, Au C. Carbon deposition and catalyst stability over La2NiO4/y-Al2O3 during CO2 reforming of methane to syngas[J]. Applied Catalysis A: General, 2003, 244(1): 181-195. [24] Gallego G, Marín J, Batiot-Dupeyrat C, et al. Influence of Pr and Ce in dry methane reforming catalysts produced from La1-xAxNiO3-δ perovskites[J]. Applied Catalysis A: General, 2009, 369(1-2): 97-103. [25] Sickafus K, Wills J, Grimes N. Structure of Spinel[J]. Journal of the American Ceramic Society, 1999, 82(12): 3279-3292. [26] Guo J, Lou H, Zheng X. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J]. Carbon, 2007, 45(6): 1314-1321. [27] García-Diéguez M, Pieta I, Herrera M, et al. Improved Pt-Ni nanocatalysts for dry reforming of methane[J]. Applied Catalysis A: General, 2010, 377(1-2): 191-199. [28] Sousa F, Sousa H, Oliveira A, et al. Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3201-3212. [29] Ikkour K, Sellam D, Kiennemann A, et al. Activity of Ni substituted Ca-La-hexaaluminate catalyst in dry reforming of methane[J]. Catalysis Letters, 2009, 132(1-2): 213-217. [30] Hu Y, Ruckenstein E. Binary MgO-based solid solution catalysts for methane conversion to syngas[J]. Catalysis Reviews: Science and Engineering, 2002, 44(3): 423-453. [31] Hu Y. Solid-solution catalysts for CO2 reforming of methane[J]. Catalysis Today, 2009, 148(3-4): 206-211. [32] Zanganeh R, Rezaei M, Zamaniyan A. Dry reforming of methane to synthesis gas on NiO-MgO nanocrystalline solid solution catalysts[J]. International Journal of Hydrogen Energy, 2013, 38(7): 3012-3018. [33] Hou Z, Gao J, Guo J, et al. Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor[J]. Journal of Catalysis, 2007, 250(2): 331-341. [34] Rostrup-Nielsen J, Trimm D. Mechanisms of carbon formation on nickel-containing catalysts[J]. Journal of Catalysis, 1977, 48(1-3): 155-165. [35] Wang S, Lu G. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art[J]. Energy Fuels, 1996, 10(4): 896-904. [36] Efstathiou A, Kladi A, Tsipouriari V, et al. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts: II. A steady-state tracing analysis: Mechanistic aspects of the carbon and oxygen reaction pathways to form CO[J]. Journal of Catalysis, 1996, 158(1): 64-75. [37] Souza M, Aranda D, Schmal M. Coke formation on Pt/ZrO2/Al2O3 catalysts during CH4 reforming with CO2[J]. Industrial & Engineering Chemistry Research, 2002, 41(18): 4681-4685. [38] Thomas W, Andrew T, Sivakumar R, et al. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening?[J]. Accounts of Chemical Research, 2013, 46(8): 1720-1730. [39] Gadalla A, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2[J]. Chemical Engineering Science, 1988, 43(11): 3049-3062. [40] Rostrup-Nielsen J. Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane[J]. Journal of Catalysis, 1984, 85(1): 31-43. [41] Hou Z, Yokota O, Tanaka T, et al. Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane[J]. Applied Surface Science, 2004, 233(1-4): 58-68 [42] Liu C, Ye J, Jiang J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. Chem. Cat. Chem., 2011, 3(3): 529-541 [43] Damyanova S, Pawelec B, Arishtirova K, et al. MCM-41 supported PdNi catalysts for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2009, 92(3-4): 250-261. [44] Lv X, Chen J, Tan Y, et al. A highly dispersed nickel supported catalyst for dry reforming of methane[J]. Catalysis Communications, 2012, 20: 6-11. [45] Liu Z, Zhou J, Cao K, et al. Highly dispersed nickel loaded on mesoporous silica: One-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide[J]. Applied Catalysis B: Environmental, 2012, 125: 324-330. [46] Masai M. Reforming by carbon dioxide and steam over supported Pd, Pt and Rh catalysts[M]. Kado H, Miyake A, et al. // Biddy B, Chang C, Howe R, et al. Methane Conversion, Proceedings of a Symposium on the Production of Fuels and Chemicals from Natural Gas, Amsterdam: Elsevier, 1988: 67-71. [47] Helveg S, López-Cartes C, Sehested J, et al. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427: 426-429. [48] Baudouin D, Szeto K, Laurent P, et al. Nickel-silicide colloid prepared under mild conditions as a versatile Ni precursor for more efficient CO2 reforming of CH4 catalysts[J]. Journal of the American Chemical Society, 2012, 134(51): 20624-20627. [49] Luna A, Iriarte M. Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst[J]. Applied Catalysis A: General, 2008, 343(1-2): 10-15. [50] Hu Y, Ruckenstein E. The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4[J]. Catalysis Letters, 43(1-2): 71-77. [51] 包信和. 纳米限域体系的催化特性[J]. 中国科学 B 辑: 化学, 2009, 39(10): 1125-1133. [52] Du X, Zhang D, Gao R, et al. Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane[J]. Chemical Communications, 2013, 49: 6770-6772. [53] Gould T, Izar A, Weimer A, et al. Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions[J]. ACS Catalysis, 2014, 4(8): 2714-2717. [54] Kim D, Sim J, Lee J, et al. Carbon dioxide reforming of methane over mesoporous Ni/SiO2[J]. Fuel, 2013, 112: 111-116. |