[1] Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources:Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48:55-69. [2] 戴自希. 世界锂资源现状及开发利用趋势[J]. 中国有色金属, 2008, 8(4):17-20. [3] 纪志永, 许长春, 袁俊生, 等. 尖晶石型锂离子筛研究进展[J]. 化工进展, 2005, 24(12):1336-1341. [4] 肖小玲, 戴志峰, 祝增虎, 等. 吸附法盐湖卤水提锂的研究进展[J]. 盐湖研究, 2005, 13(2):66-69. [5] 董殿权, 刘维娜, 刘亦凡. 二氧化锰型钾离子筛的合成及其对钾的离子交换热力学[J]. 化工进展, 2009, 28(6):1005-1009. [6] 李丽, 刘芳, 吴锋, 等. 提锂用锰氧化物离子筛的研究进展[J]. 无机材料学报, 2012, 27(10):1009-1016. [7] 周燕芳, 钟辉. 尖晶石LiMn2O4正极材料的研究进展[J]. 化工进展, 2003, 22(2):140-145. [8] 王大伟. 离子筛法海水提锂新工艺研究[D]. 天津:河北工业大学, 2008. [9] Sato K, Poojary D M, Clearfield A. The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties[J]. Journal of Solid State Chemistry, 1997, 131:84-93. [10] 许惠, 卓琳. 锂离子筛前驱体LiMn2O4的制备及锂吸附性能研究[J]. 化工新型材料, 2013, 41(8):123-125. [11] Özgür C. Preparation and characterization of LiMn2O4 ion-sieve with high Li+ adsorption rate by ultrasonic spray pyrolysis[J]. Solid State Ionics, 2010, 181:1425-1428. [12] Zhang Q H, Sun S Y, Li S P, et al. Adsorption of lithium ions on novel nanocrystal MnO2[J]. Chemical Engineering Science, 2007, 62:4869-4874. [13] 王英平, 王先友, 隗小山, 等. 以Mn3O4为前驱体制备尖晶石型LiMn2O4及其性能[J]. 中国有色金属学报, 2012, 22(8):2276-2282. [14] 李有坤, 邱克辉. 尖晶石型LiMn2O4的凝胶燃烧法制备[J]. 功能材料, 2013, 44(4):498-501, 506. [15] 许惠, 陈昌国, 宋应华. 锂离子筛前驱体Li4Mn5O12的制备及性能研究[J]. 无机材料学报, 2013, 28(7):720-726. [16] Sun S Y, Song X F, Zhang Q H, et al. Lithium extraction/insertion process on cubic Li-Mn-O precursors with different Li/Mn ratio and morphology[J]. Adsorption, 2011, 17:881-887. [17] 蒙丽丽, 韦华, 李士霞, 等. 尖晶石型锰酸锂锂离子筛的合成研究[J]. 无机盐工业, 2009, 41(3):37-39. [18] 许惠, 陈昌国, 宋应华, 等. 锂离子筛前驱体Li4Mn5O12的制备及性能[J]. 中国有色金属学报, 2013, 23(10):2868-2874. [19] Zhang Y C, Wang H, Wang B, et al. Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method[J]. Materials Research Bulletin, 2002, 37:1411-1417. [20] Yang X J, Kanoh H, Tang W P, et al. Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation[J]. Journal of Materials Chemistry, 2000, 10:1903-1909. [21] Chitrakar R, Kanoh H, Miyai Y, et al. Recovery of lithium from seawater using manganese oxide adsorbent(H1.6H1.6O4)derived from Li1.6Mn1.6O4[J]. Industrial & Engineering Chemistry Research, 2001, 40:2054-2058. [22] Shi X C, Zhou D F, Zhang Z B, et al. Synthesis and properties of Li1.6Mn1.6O4 and its adsorption application[J]. Hydrometallurgy, 2011, 110:99-106. [23] Chitrakar R, Kanoh H, Miyai Y, et al. A new type of manganese oxide(MnO2·0.5H2O)derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties[J]. Chemistry of Material, 2000, 12:3151-3157. [24] 王禄, 马伟, 韩梅, 等. 高效锂离子筛吸附剂MnO2·0.5H2O的软化学合成及吸附性能研究[J]. 化学学报, 2007, 65(12):1135-1139. [25] Xiao J L, Sun S Y, Wang J, et al. Synthesis and adsorption properties of Li1.6Mn1.6O4 Spinel[J]. Industrial & Engineering Chemistry Research, 2013, 52(34):11967-11973. [26] Zhu G R, Wang P, Oi P F, et al. Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane[J]. Chemical Engineering Journal, 2014, 235:340-348. [27] 孙淑英, 张钦辉, 于建国. 纳米MnO2离子筛的锂吸附性能[J]. 化工学报, 2007, 58(7):1757-1761. [28] 陆红岩, 杨立新, 邬赛祥, 等. 三维有序大孔尖晶石型Li1.6Mn1.6O4的制备及锂离子筛吸附特性[J]. 高等学校化学学报, 2011, 32(10):2268-2273. [29] 毕参参, 李晶, 董殿权. PS微球的制备及三维胶晶模板的组装和应用[J]. 化工新型材料, 2012, 40(5):136-138. [30] Kim Y S, Kanoh H, Hirotsu T, et al. Chemical bonding of ion-exchange type sites in spinel-type manganese oxides Li1.33Mn1.67O4[J]. Materials Research Bulletin, 2002, 37:391-396. [31] Feng Q, Kanoh H, Ooi K. Manganese oxide porous crystals[J]. Materials Chemistry, 1998, 9:319-333. [32] Wang L, Ma W, Liu R, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor[J]. Solid State Ionics, 2006, 177:1421-1428. [33] 王盼. 锂离子筛膜的制备及其吸附性能研究[D]. 青岛:中国海洋大学, 2013. [34] Ammundsen B, Jones D J, Roziere J, et al. Ion exchange in manganese dioxide spinel:Proton, deuteron, and lithium sites determined from neutron powder diffraction data[J]. Chemistry of Materials, 1998, 10:1680-1687. [35] Ariza M J, Jones D J, Rozieŕe J, et al. Probing the local structure and the role of protons in lithium sorption processes of a new lithium-rich manganese oxide[J]. Chemistry of Materials, 2006, 18:1885-1890. [36] Darul J, Nowicki W, Piszora P. Unusual compressional behavior of lithium-manganese oxides:A case study of Li4Mn5O12[J]. Journal of Physical Chemistry, 2012, 116:17872-17879. [37] 孙淑英, 张钦辉, 于建国. 低维纳米立方相Li4Mn5O12的制备及锂吸附性能[J]. 无机材料学报, 2010, 25(6):626-630. [38] 竺柏康, 王东光, 任益枰, 等. 新型磁性纳米锂离子筛的合成[J]. 化工学报, 2011, 62(7):2067-2074. [39] 闫树旺, 钟辉, 黄志华. 粒状二氧化钛交换剂的研制及从卤水中提取锂[J]. 离子交换与吸附, 1994, 10(3):219-225. [40] 李超, 肖伽励, 孙淑英, 等. 球形离子筛吸附剂的制备及其锂吸附性能评价[J]. 化工学报, 2014, 65(1):220-226. [41] 孟兴智. 离子筛型锂吸附剂的成型及其性能研究[D]. 天津:河北工业大学, 2005. [42] Hong H J, Park I S, Ryu T, et al. Granulation of Li1.33Mn1.67O4(LMO)through the use of cross-linked chitosan for the effective recovery of Li+ from seawater[J]. Chemical Engineering Journal, 2013, 234:16-22. [43] Xiao G P, Tong K F, Zhou L S, et al. Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve[J]. Industrial & Engineering Chemistry Research, 2012, 51:10921-10929. [44] 邱实. 基于碳纳米管的有机/无机杂化膜的制备及性能研究[D]. 杭州:浙江大学, 2011. [45] Umeno A, Miyai Y, Takagi N, et al. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater[J]. Industrial & Engineering Chemistry Research, 2002, 41(17):4281-4287. [46] Chung K S, Lee J C, Kim W K, et al. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater[J]. Journal of Membrane Science, 2008, 325:503-508. [47] 解利昕, 陈小棉. Li1.6Mn1.6O4/PVDF多孔膜的制备及提锂性能[J]. 化工学报, 2014, 65(1):237-243. [48] Yang S S, Liu X, Shen J N, et al. Applied Mechanics and Materials[M]. Switzerland:Trans Tech Publications, 2014. [49] 赵丽丽, 王榕树. 锂离子交换剂制备及交换反应动力学[J]. 物理化学学报, 2003, 19(10):933-937. [50] Yuan J S, Yin H B, Ji Z Y, et al. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate[J]. Industrial & Engineering Chemistry Research, 2014, 53:9889-9896 |