Chemical Industry and Engineering Progree

Previous Articles     Next Articles

Synthesis of hollow SiO2 microspheres with combination of sol-gel and self-templating methods

ZHANG Qing   

  1. School of Chemistry,Tangshan Normal College,Tangshan 063000,Hebei,China
  • Online:2014-06-05 Published:2014-06-05

溶胶-凝胶法与自模板法相结合制备SiO2中空微球

张青   

  1. 唐山师范学院化学系,河北 唐山 063000

Abstract: Firstly,SiO2 shell precursor was prepared with the sol-gel method using tetraethoxysilane and methyltrimethoxysilane as silica source. Then the emulsion droplets were solidified through the self-templating method with a solidifying agent. After the outer surface of the emulsion droplets was solidified,they could serve as self-templates. Subsequently,the unreacted precursor within the emulsion droplets became solidified onto the templates as shell,producing hollow SiO2 microspheres. The effects of amount of deionized water and stirring rate on the morphology and particle size of hollow silica microspheres were investigated. The morphology,particle size distribution and surface properties were characterized with scanning electron microscopy (SEM),transmission electron microscopy (TEM),dynamic light scattering (DLS),and nitrogen adsorption,respectively. Experiment results indicated that the resulting microspheres with an average particle size of 592 nm were perfectly spherical,and the surface exhibited microporous/mesoporous structure. In addition,the particle size of hollow silica microspheres decreased with increasing amount of deionized water and stirring rate.

Key words: silica, hollow microspheres, sol-gel, self-templating method, particle size distribution

摘要: 以正硅酸乙酯和甲基三甲氧基硅烷为硅源,采用sol-gel法制备SiO2胶体粒子,作为制备中空微球的前体,然后在固化剂的作用下,利用自模板法使乳液液滴外表面首先被固化,并以其自身作为模板制备SiO2中空微球,讨论了去离子水用量和搅拌速率对微球尺寸的影响。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、动态光散射(DLS)和低温氮吸附法对其进行表征。结果表明,得到的SiO2中空微球球形形态规整,平均粒径为592nm,其表面具有微孔/介孔复合结构,且在一定的范围内,微球的尺寸随着去离子水用量和搅拌速率的增加而逐渐减小。

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd