Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2394-2406.DOI: 10.16085/j.issn.1000-6613.2025-0090
• Synthetic biomanufacturing • Previous Articles
WANG Liangyu1,2,3(
), CAO Hui1,2,3, TAN Tianwei1,2,3(
)
Received:2025-01-14
Revised:2025-04-19
Online:2025-05-20
Published:2025-05-25
Contact:
TAN Tianwei
王良玉1,2,3(
), 曹辉1,2,3, 谭天伟1,2,3(
)
通讯作者:
谭天伟
作者简介:王良玉(1996—),男,博士,研究方向为生物基材料。E-mail:wangliangyu@mail.buct.edu.cn。
基金资助:CLC Number:
WANG Liangyu, CAO Hui, TAN Tianwei. Constructing bio-based materials and monomer modules based on microbial fermentation[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2394-2406.
王良玉, 曹辉, 谭天伟. 基于微生物发酵构建生物基材料及单体模块[J]. 化工进展, 2025, 44(5): 2394-2406.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0090
| 单体模块 | 底物 | 菌种 | 滴度/g·L-1 | 得率/g·g-1 | 生产速率/g·L-1·h-1 | 参考文献 |
|---|---|---|---|---|---|---|
| 乙二醇 | 木糖 | E. coli W3110 | 108.2 | 0.3600 | 2.250 | [ |
| 1,3-丙二醇 | 甘油 | K. pneumoniae LDH526 | 102.1 | 0.5200 | 2.130 | [ |
| 葡萄糖 | E. coli | 135.0 | 1.200 | 3.500 | [ | |
| 葡萄糖 | C. glutamicum MBP14 | 110.4 | 0.4200 | 2.300 | [ | |
| 1,4-丁二醇 | 葡萄糖 | E. coli | 125.0 | 0.4000 | 0.3500 | [ |
| 对苯二甲酸 | 对二甲苯 | E. coli DH5α | 6.700 | 0.6200 | 0.2800 | [ |
| 对二甲苯 | P. putida KT2440 | 38.25 | 0.6400 | — | [ | |
| 丁二酸 | 甘蔗汁 | I. orientalis SD108 | 63.10 | 0.5000 | 0.6600 | [ |
| 葡萄糖 | Y. lipolytica Hi-SA2 | 111.9 | 0.7900 | 1.790 | [ | |
| 己二酸 | 葡萄糖和甘油 | E. coli Mad123146 | 68.00 | 0.3800 | 0.8100 | [ |
| 黏康酸 | 葡萄糖 | C. glutamicum MA8 | 88.20 | 0.3000 | — | [ |
| 木质纤维素水解液 | C. glutamicum EMA1 | 19.90 | 0.3300 | — | ||
| 苯乙烯 | 葡萄糖 | E. coli YHP05 | 5.300 | — | 0.09000 | [ |
| 丁二烯 | 葡萄糖 | E. coli CFB22 | 2.130 | — | — | [ |
| 单体模块 | 底物 | 菌种 | 滴度/g·L-1 | 得率/g·g-1 | 生产速率/g·L-1·h-1 | 参考文献 |
|---|---|---|---|---|---|---|
| 乙二醇 | 木糖 | E. coli W3110 | 108.2 | 0.3600 | 2.250 | [ |
| 1,3-丙二醇 | 甘油 | K. pneumoniae LDH526 | 102.1 | 0.5200 | 2.130 | [ |
| 葡萄糖 | E. coli | 135.0 | 1.200 | 3.500 | [ | |
| 葡萄糖 | C. glutamicum MBP14 | 110.4 | 0.4200 | 2.300 | [ | |
| 1,4-丁二醇 | 葡萄糖 | E. coli | 125.0 | 0.4000 | 0.3500 | [ |
| 对苯二甲酸 | 对二甲苯 | E. coli DH5α | 6.700 | 0.6200 | 0.2800 | [ |
| 对二甲苯 | P. putida KT2440 | 38.25 | 0.6400 | — | [ | |
| 丁二酸 | 甘蔗汁 | I. orientalis SD108 | 63.10 | 0.5000 | 0.6600 | [ |
| 葡萄糖 | Y. lipolytica Hi-SA2 | 111.9 | 0.7900 | 1.790 | [ | |
| 己二酸 | 葡萄糖和甘油 | E. coli Mad123146 | 68.00 | 0.3800 | 0.8100 | [ |
| 黏康酸 | 葡萄糖 | C. glutamicum MA8 | 88.20 | 0.3000 | — | [ |
| 木质纤维素水解液 | C. glutamicum EMA1 | 19.90 | 0.3300 | — | ||
| 苯乙烯 | 葡萄糖 | E. coli YHP05 | 5.300 | — | 0.09000 | [ |
| 丁二烯 | 葡萄糖 | E. coli CFB22 | 2.130 | — | — | [ |
| 1 | ZHANG Yiwen, YANG Junjie, QIAN Fenghui, et al. Engineering a xylose fermenting yeast for lignocellulosic ethanol production[J]. Nature Chemical Biology, 2025, 21(3): 443-450. |
| 2 | HUANG Jiacheng, LI Chade-Deng, ZHAO Haodong, et al. Artificial intelligence system for enhanced automated 1,3-propanediol green biosynthesis[J]. Green Chemistry, 2023, 25(22): 9175-9186. |
| 3 | NI Ping, GAO Cong, WU Jing, et al. Production of 1,4-butanediol from succinic acid using Escherichia coli whole-cell catalysis[J]. ChemBioChem, 2024, 25(11): e202400142. |
| 4 | LIU Huan, LIU Shuang, NING Yuchen, et al. Metabolic engineering of Escherichia coli for efficient production of 1,4-butanediol from crude glycerol[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111660. |
| 5 | CUI Zhiyong, ZHONG Yutao, SUN Zhijie, et al. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica [J]. Nature Communications, 2023, 14(1): 8480. |
| 6 | YAN Xiongying, BAO Weiwei, WU Yalun, et al. Paradigm of engineering recalcitrant non-model microorganism with dominant metabolic pathway as a biorefinery chassis[J]. Nature Communications, 2024, 15(1): 10441. |
| 7 | CHOI So Young, LEE Youngjoon, YU Hye Eun, et al. Sustainable production and degradation of plastics using microbes[J]. Nature Microbiology, 2023, 8(12): 2253-2276. |
| 8 | ZHOU Li, ZHANG Zhen, SHI Changxia, et al. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates[J]. Science, 2023, 380(6640): 64-69. |
| 9 | WANG Xuan, HAN Jianing, ZHANG Xu, et al. Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli [J]. Nature Communications, 2021, 12(1): 1411. |
| 10 | WANG Yang, HU Litao, HUANG Hao, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum [J]. Nature Communications, 2020, 11(1): 3120. |
| 11 | CYWAR Robin M, RORRER Nicholas A, HOYT Caroline B, et al. Bio-based polymers with performance-advantaged properties[J]. Nature Reviews Materials, 2021, 7(2): 83-103. |
| 12 | KAMRAN Muhammad, Andrew KAY, DAVIDSON Matthew G. Facile synthesis of a novel furanic monomer and its ADMET polymerization toward fully renewable functional polymers[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(37): 13798-13809. |
| 13 | MANKER Lorenz P, DICK Graham R, DEMONGEOT Adrien, et al. Sustainable polyesters via direct functionalization of lignocellulosic sugars[J]. Nature Chemistry, 2022, 14(9): 976-984. |
| 14 | 周文娟, 付刚, 齐显尼, 等. 发酵工业菌种的迭代创制[J]. 生物工程学报, 2022, 38(11): 4200-4218. |
| ZHOU Wenjuan, FU Gang, QI Xianni, et al. Upgrading microbial strains for fermentation industry[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4200-4218. | |
| 15 | DHARMARAJA Jeyaprakash, SHOBANA Sutha, ARVINDNARAYAN Sundaram, et al. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications[J]. Bioresource Technology, 2023, 369: 128328. |
| 16 | MADADI Meysam, SONG Guojie, GUPTA Vijai Kumar, et al. Non-catalytic proteins as promising detoxifiers in lignocellulosic biomass pretreatment: Unveiling the mechanism for enhanced enzymatic hydrolysis[J]. Green Chemistry, 2023, 25(18): 7141-7156. |
| 17 | LI Ning, YAN Kexin, RUKKIJAKAN Thanya, et al. Selective lignin arylation for biomass fractionation and benign bisphenols[J]. Nature, 2024, 630(8016): 381-386. |
| 18 | LUO Zhicheng, LIU Chong, RADU Alexandra, et al. Carbon-carbon bond cleavage for a lignin refinery[J]. Nature Chemical Engineering, 2024, 1(1): 61-72. |
| 19 | LIU Xuan, ZHANG Huijie, XI Shuangshuang, et al. Lignin-based ultrathin hydrogel coatings with strong substrate adhesion enabled by hydrophobic association[J]. Advanced Functional Materials, 2025, 35(3): 2413464. |
| 20 | YANG Guangxu, GONG Zhenggang, LUO Xiaolin, et al. Bonding wood with uncondensed lignins as adhesives[J]. Nature, 2023, 621(7979): 511-515. |
| 21 | LIU Zihe, WANG Kai, CHEN Yun, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3(3): 274-288. |
| 22 | SULLIVAN Ian, GORYACHEV Andrey, DIGDAYA Ibadillah A, et al. Coupling electrochemical CO2 conversion with CO2 capture[J]. Nature Catalysis, 2021, 4(11): 952-958. |
| 23 | YU Sunmoon, YAMAUCHI Hiroki, WANG Shuo, et al. CO2-to-methanol electroconversion on a molecular cobalt catalyst facilitated by acidic cations[J]. Nature Catalysis, 2024, 7(9): 1000-1009. |
| 24 | BI Haoran, WANG Kai, XU Chenchen, et al. Biofuel synthesis from carbon dioxide via a bio-electrocatalysis system[J]. Chem Catalysis, 2023, 3(3): 100557. |
| 25 | 王凯, 刘子鹤, 陈必强, 等. 微生物利用二氧化碳合成燃料及化学品——第三代生物炼制[J]. 合成生物学, 2020, 1(1): 60-70. |
| WANG Kai, LIU Zihe, CHEN Biqiang, et al. Microbial utilization of carbon dioxide to synthesize fuels and chemicals—third-generation biorefineries[J]. Synthetic Biology Journal, 2020, 1(1): 60-70. | |
| 26 | JIANG Jing, LI Xinwei, YANG Kaiguang, et al. Photosynthetic cultivation of Chlamydomonas reinhardtii with formate as a novel carbon source to the protein production[J]. Chemical Engineering Journal, 2024, 493: 152518. |
| 27 | LAI Martin J, TSAI Jemmy C, LAN Ethan I. CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria[J]. Bioresource Technology, 2022, 366: 128131. |
| 28 | 肖璐, 李寅. 生物固碳: 从自然生物到人工合成[J]. 合成生物学, 2022, 3(5): 833-846. |
| XIAO Lu, LI Yin. Biological carbon fixation: From natural to synthetic[J]. Synthetic Biology Journal, 2022, 3(5): 833-846. | |
| 29 | GRUTER Gert-Jan M. Using carbon above the ground as feedstock to produce our future polymers[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 40: 100743. |
| 30 | Chenlong NAN, PANG Tong, ZHAO Jiaxing, et al. Novel photoresponsive dinuclear nickel catalysts for ethylene (co)polymerization[J]. Science China Chemistry, 2025, 68(2): 714-722. |
| 31 | SYRANIDOU Evdokia, KARKANORACHAKI Katerina, BAROUTA Despoina, et al. Relationship between the carbonyl index (CI) and fragmentation of polyolefin plastics during aging[J]. Environmental Science & Technology, 2023, 57(21): 8130-8138. |
| 32 | ZHANG Shuai, XIA Bingquan, QU Yang, et al. Photocatalytic production of ethylene and propionic acid from plastic waste by titania-supported atomically dispersed Pd species[J]. Science Advances, 2023, 9(49): eadk2407. |
| 33 | MCKENNA Rebekah, NIELSEN David R. Styrene biosynthesis from glucose by engineered E. coli [J]. Metabolic Engineering, 2011, 13(5): 544-554. |
| 34 | LEE Kyungsoo, BANG Hyun Bae, LEE Yoon Hyeok, et al. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent[J]. Microbial Cell Factories, 2019, 18(1): 79. |
| 35 | JI Lei, MENG Jiaolong, LI Chengliang, et al. From polyester plastics to diverse monomers via low-energy upcycling[J]. Advanced Science, 2024, 11(25): 2403002. |
| 36 | CHEN Junliang, ZHANG Fangzhou, KUANG Min, et al. Unveiling synergy of strain and ligand effects in metallic aerogel for electrocatalytic polyethylene terephthalate upcycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(17): e2318853121. |
| 37 | CHAE Tong Un, CHOI So Young, Jae Yong RYU, et al. Production of ethylene glycol from xylose by metabolically engineered Escherichia coli [J]. AIChE Journal, 2018, 64(12): 4193-4200. |
| 38 | 刘建明, 张炽坚, 张冰, 等. 巴氏梭菌作为工业底盘细胞高效生产1,3-丙二醇——从代谢工程和菌种进化到过程工程和产品分离[J]. 合成生物学, 2024, 5(6): 1386-1403. |
| LIU Jianming, ZHANG Chijian, ZHANG Bing, et al. Clostridium pasteurianum as an industrial chassis for efficient production of 1,3-propanediol: From metabolic engineering to fermentation and product separation[J]. Synthetic Biology Journal, 2024, 5(6): 1386-1403. | |
| 39 | LI Zihua, DONG Yufei, LIU Yu, et al. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose[J]. Metabolic Engineering, 2022, 70: 79-88. |
| 40 | LI Mingda, ZHANG Yang, LI Jingchuan, et al. Biosynthesis of 1,3-propanediol via a new pathway from glucose in Escherichia coli [J]. ACS Synthetic Biology, 2023, 12(7): 2083-2093. |
| 41 | ZHOU Bo, SHI Kai, TENG Xue, et al. Membrane-free electrocatalytic co-conversions of PBS waste plastics and maleic acid into high-purity succinic acid solid[J]. Angewandte Chemie International Edition, 2024, 63(44): e202411502. |
| 42 | TRAN Vinh G, MISHRA Somesh, BHAGWAT Sarang S, et al. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis [J]. Nature Communications, 2023, 14(1): 6152. |
| 43 | YU Yong, ZHU Xinna, XU Hongtao, et al. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli [J]. Metabolic Engineering, 2019, 56: 181-189. |
| 44 | LUO Zi Wei, LEE Sang Yup. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli [J]. Nature Communications, 2017, 8(1): 15689. |
| 45 | LUO Zi Wei, CHOI Kyeong Rok, LEE Sang Yup. Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida [J]. Metabolic Engineering, 2023, 76: 75-86. |
| 46 | CHU Haodong, FENG Xinqiang, WU Xue, et al. 2,5-hexanedione: The bridge for p-xylene production from lignocellulosic biomass via a brand new two-step route[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(1): 177-186. |
| 47 | BALLA Evangelia D, PAPADOPOULOS Lazaros, AINALI Nina Maria, et al. Poly(ethylene furanoate-co-ethylene vanillate) biobased copolymers: Impact of the incorporation of vanillic acid units in poly(ethylene furanoate)[J]. European Polymer Journal, 2022, 176: 111429. |
| 48 | PAPAGEORGIOU George Z, NIKOLAIDIS George N, IOANNIDIS Rafael O, et al. A step forward in thermoplastic polyesters: Understanding the crystallization and melting of biobased poly(ethylene 2,5-furandicarboxylate) (PEF)[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(21): 7050-7064. |
| 49 | MA Jianwen, ZENG Furong, LIN Xincen, et al. A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling[J]. Science, 2024, 385(6704): 68-74. |
| 50 | YANG Yuhe, SUO Di, XU Tianpeng, et al. Sprayable biomimetic double mask with rapid autophasing and hierarchical programming for scarless wound healing[J]. Science Advances, 2024, 10(33): eado9479. |
| 51 | YIN Jing, XU Lan, AHMED Adnan. Batch preparation and characterization of electrospun porous polylactic acid-based nanofiber membranes for antibacterial wound dressing[J]. Advanced Fiber Materials, 2022, 4(4): 832-844. |
| 52 | TAN Chunlin, TAO Fei, XU Ping. Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories[J]. Green Chemistry, 2022, 24(11): 4470-4483. |
| 53 | YU Linping, YAN Xu, ZHANG Xu, et al. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis[J]. Metabolic Engineering, 2020, 59: 119-130. |
| 54 | CYWAR Robin M, LING Chen, CLARKE Ryan W, et al. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability[J]. Science Advances, 2023, 9(47): eadi1735. |
| 55 | MORI Yutaro, NODA Shuhei, SHIRAI Tomokazu, et al. Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant[J]. Nature Communications, 2021, 12(1): 2195. |
| 56 | Xiaomei LYU, GU Jiali, WANG Fan, et al. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering[J]. Biotechnology and Bioengineering, 2016, 113(12): 2661-2669. |
| 57 | LIN Jiaxi, YAO Zhen, Xiaomei LYU, et al. Development of a dual temperature control system for isoprene biosynthesis in Saccharomyces cerevisiae [J]. Frontiers of Chemical Science and Engineering, 2022, 16(7): 1079-1089. |
| 58 | Xiaomei LYU, WANG Fan, ZHOU Pingping, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae [J]. Nature Communications, 2016, 7(1): 12851. |
| 59 | SHAIKH Kurshedaktar M, ODANETH Annamma A. Metabolic engineering of Yarrowia lipolytica for the production of isoprene[J]. Biotechnology Progress, 2021, 37(6): e3201. |
| 60 | HUANG Shaoqi, ZHANG Junqi, KONG Lingmin, et al. Fully biosourced, vulcanization-free, and thermal-responsive natural rubber material[J]. Macromolecules, 2024, 57(4): 1642-1652. |
| 61 | YAMASHITA Satoshi, YAMAGUCHI Haruhiko, WAKI Toshiyuki, et al. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis [J]. eLife, 2016, 5: e19022. |
| 62 | YAMASHITA Satoshi, TAKAHASHI Seiji. Molecular mechanisms of natural rubber biosynthesis[J]. Annual Review of Biochemistry, 2020, 89: 821-851. |
| 63 | CHERIAN Sam, Stephen Beungtae RYU, CORNISH Katrina. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects[J]. Plant Biotechnology Journal, 2019, 17(11): 2041-2061. |
| 64 | YANG Kaixin, QIAO Yangge, LI Fei, et al. Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica[J]. Metabolic Engineering, 2019, 55: 231-238. |
| 65 | MA Yongshuo, LI Jingbo, HUANG Sanwen, et al. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica [J]. Metabolic Engineering, 2021, 68: 152-161. |
| 66 | YANG Ji, LIU Jiawang, NEUMANN Helfried, et al. Direct synthesis of adipic acid esters via palladium-catalyzed carbonylation of 1,3-dienes[J]. Science, 2019, 366(6472): 1514-1517. |
| 67 | ZHANG Xu, CHEN Yong, YE Mengting, et al. Biodegradable copolyesters with unexpected highly blocky microstructures and enhanced thermal properties[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(14): 4438-4450. |
| 68 | VERNEKAR Dnyanesh, DAYYAN Mohammad, RATHA Satyajit, et al. Direct oxidation of cyclohexane to adipic acid by a WFeCoO(OH) catalyst: Role of Brønsted acidity and oxygen vacancies[J]. ACS Catalysis, 2021, 11(17): 10754-10766. |
| 69 | WANG Xiao, BIAN Wenyi, MA Yurong, et al. Hydroxyl-terminated carbon dots for efficient conversion of cyclohexane to adipic acid[J]. Journal of Colloid and Interface Science, 2021, 591: 281-289. |
| 70 | ZHAO Mei, HUANG Dixuan, ZHANG Xiaojuan, et al. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J]. Metabolic Engineering, 2018, 47: 254-262. |
| 71 | ZHOU Yu, ZHAO Mei, ZHOU Shenghu, et al. Biosynthesis of adipic acid by a highly efficient induction-free system in Escherichia coli [J]. Journal of Biotechnology, 2020, 314/315: 8-13. |
| 72 | CACHERA Paul, KURT Nikolaj Can, Andreas RØPKE, et al. Genome-wide host-pathway interactions affecting cis-cis-muconic acid production in yeast[J]. Metabolic Engineering, 2024, 83: 75-85. |
| 73 | PYNE Michael E BAGLEY James A, NARCROSS Lauren, et al. Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid[J]. Nature Communications, 2023, 14(1): 5294. |
| 74 | JOHNSON Christopher W, Davinia SALVACHÚA, KHANNA Payal, et al. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity[J]. Metabolic Engineering Communications, 2016, 3: 111-119. |
| 75 | MOKWATLO Sekgetho C, KLEIN Bruno C, BENAVIDES Pahola Thathiana, et al. Bioprocess development and scale-up for cis,cis-muconic acid production from glucose and xylose by Pseudomonas putida [J]. Green Chemistry, 2024, 26(19): 10152-10167. |
| 76 | LI Menglei, CHEN Jiayao, HE Keqin, et al. Corynebacterium glutamicum cell factory design for the efficient production of cis,cis-muconic acid[J]. Metabolic Engineering, 2024, 82: 225-237. |
| 77 | ZHANG Shiding, LI Qinrou, HE Keqin, et al. Computational redesign of an enoate reductase for the in vivo production of adipic acid from muconic acid[J]. Chem Catalysis, 2024, 4(8): 101042. |
| 78 | TAN Zan, XIAO Longyou, MA Junwu, et al. Integrating hydrogels manipulate ECM deposition after spinal cord injury for specific neural reconnections via neuronal relays[J]. Science Advances, 10(27): eado9120. |
| 79 | LI Shangzhi, KE Zhiqiang, PENG Xiaotong, et al. Injectable and fast gelling hyaluronate hydrogels with rapid self-healing ability for spinal cord injury repair[J]. Carbohydrate Polymers, 2022, 298: 120081. |
| 80 | XING Hui, PAN Xiangjun, HU Yihan, et al. High molecular weight hyaluronic acid-liposome delivery system for efficient transdermal treatment of acute and chronic skin photodamage[J]. Acta Biomaterialia, 2024, 182: 171-187. |
| 81 | Carmine D'AMICO, FUSCIELLO Manlio, HAMDAN Firas, et al. Transdermal delivery of PeptiCRAd cancer vaccine using microneedle patches[J]. Bioactive Materials, 2025, 45: 115-127. |
| 82 | LU Yi, MEHLING Marina, HUAN Siqi, et al. Biofabrication with microbial cellulose: From bioadaptive designs to living materials[J]. Chemical Society Reviews, 2024, 53(14): 7363-7391. |
| 83 | ZHAO Xueqing, SHI Yucheng, NIU Shaofang, et al. Enhancing wound healing and bactericidal efficacy: A hydrogel membrane of bacterial cellulose and sanxan gel for accelerating the healing of infected wounds[J]. Advanced Healthcare Materials, 2024, 13(8): e2303216. |
| 84 | LIU Xingang, WU Min, WANG Meng, et al. Direct synthesis of photosensitizable bacterial cellulose as engineered living material for skin wound repair[J]. Advanced Materials, 2022, 34(13): e2109010. |
| 85 | GAO Chong, LIU Yingcun, GU Zongxue, et al. Hierarchical structured fabrics with enhanced pressure sensing performance based on orientated growth of functional bacterial cellulose[J]. Advanced Fiber Materials, 2024, 6(5): 1554-1568. |
| 86 | 王蕾. 细菌纤维素抗菌敷料的制备及性能研究[D]. 上海: 东华大学, 2016. |
| WANG Lei. Preparation and properties of bacterial cellulose antibacterial dressing[D]. Shanghai: Donghua University, 2016. | |
| 87 | GAO Minghong, LI Juan, BAO Zixian, et al. A natural in situ fabrication method of functional bacterial cellulose using a microorganism[J]. Nature Communications, 2019, 10(1): 437. |
| 88 | WALKER Kenneth T, LI Ivy S, KEANE Jennifer, et al. Self-pigmenting textiles grown from cellulose-producing bacteria with engineered tyrosinase expression[J]. Nature Biotechnology, 2025, 43(3): 345-354. |
| [1] | CAO Xianghong, ZHOU Feng, JIANG Rui, LIU Shizhe, FANG Xiangchen, KANG Wanzhong, QIAO Jinliang, NIE Hong. Strategies to accelerate the development of China's bio-based materials industry [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2385-2393. |
| [2] | ZHANG Dongxu, YAO Qiang, HEI Shunan, LI Weidong, LIU Cheng, LI Zhijun, SONG Lechun, HAN Zhaoming. Compatibility and performance analysis of waste plastic modified asphalts: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1651-1665. |
| [3] | FENG Wanqi, YANG Cuiping, HAO Junyao, NI Hongmei, ZHAO Jianbo. Preparation and properties of wood-plastic composites based on extract of cotton spinning black liquor [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1768-1775. |
| [4] | ZHENG Junyi, LI Ming, ZHU Beihong, SU Chang, GUO Sihan, YU QiLin, ZHANG Yaobin. Intensification of butyric acid fermentation in kitchen waste system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 597-603. |
| [5] | ZHANG Rui, JIANG Jing, XU Hongfei, YANG Shengkai, LI Yahong, ZHOU Jingyuan, ZENG Jianxian, HUANG Xiaoping, LIU Pengfei, ZHANG Mingming, LI Zhiqiang. Progress of ceramic membrane separation technology and its application in bio-manufacturing field [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4550-4561. |
| [6] | LIU Jun, XU Zhixiang, ZHU Chunyou, YUE Zhongqiu, PAN Xuejun. Microbial degradation of typical microplastics in environment: Degradation pathways and molecular mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4059-4071. |
| [7] | HUANG Sihan, LING Ling, LI Jiabin, LI Xiufen. Influence of ventilation rate on aerobic fermentation process of food waste with microbial inoculant addition [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4128-4137. |
| [8] | QU Chao, LIU Junhong, JIA Bin, HUANG Yong. Effect of waterborne acrylic resin on the properties of PBAT/starch composite materials [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3268-3276. |
| [9] | ZHAO Peitao, FU Binbin, ZHAO Quan, ZUO Wu, ZHOU Haiyun, HAN Dongtai. Thermal decomposition of plastics via low pressure and superheated solvent steam and its characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3420-3429. |
| [10] | MENG Weibo, XING Baolin, CHENG Song, FENG Laihong, SHI Feng, ZENG Huihui, LEI Sile, WANG Xue, ZHAO Saidan, ZENG Xiangwang. Preparation of carbon nanotubes by catalytic pyrolysis of waste plastics and its growth mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3468-3478. |
| [11] | HE Ruiqiang, FANG Min, ZHOU Jianduo, FEI Hua, YANG Kai. Research progress of TPE-based flexible composite phase change materials for thermal management of lithium batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3159-3173. |
| [12] | LIU Haihong, LUO Lu, ZHANG Yuancheng, ZHANG Xiaomeng, CUI Zhe, FU Peng, PANG Xinchang, LIU Minying. Preparation and radiation resistance of thermoplastic elastomer for medical devices [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1047-1053. |
| [13] | PENG Xinxin. Electrochemical strategies for hydroformylation of olefin [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6589-6591. |
| [14] | HUANG Chao, REN Xiaojie, PEI Jiangsen, ZHAO Xinhe, ZHAO Yubin, WANG Lingyun, JING Yuhang. Optimization and analysis of the metabolic pathway of succinic acid-producing viaE.coli SUC37 [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6883-6895. |
| [15] | SHANG Gaoyuan, YU Jinpeng, CUI Kai, GUO Kun. Impact of cathode potentials on methane production from high-concentration potato starch wastewater in electro-fermentation systems [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6533-6542. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |