Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7214-7225.DOI: 10.16085/j.issn.1000-6613.2024-2075
• Resources and environmental engineering • Previous Articles
ZHANG Haozhen1,2(
), LIU Yang1, YE Xiaomei1,3, ZHANG Hongyu1, ZHAO Keke1, ZHU Fei1,3, SUN Xiaochuan2, XI Yonglan1,2,3(
)
Received:2024-12-19
Revised:2025-03-08
Online:2026-01-06
Published:2025-12-25
Contact:
XI Yonglan
张浩祯1,2(
), 刘洋1, 叶小梅1,3, 张鸿宇1, 赵苛苛1, 朱飞1,3, 孙小川2, 奚永兰1,2,3(
)
通讯作者:
奚永兰
作者简介:张浩祯(1998—),女,硕士研究生,研究方向为农业废弃物资源化利用。E-mail:xiaofugui949@163.com。
基金资助:CLC Number:
ZHANG Haozhen, LIU Yang, YE Xiaomei, ZHANG Hongyu, ZHAO Keke, ZHU Fei, SUN Xiaochuan, XI Yonglan. Production optimization and application of medium chain carboxylic acid[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7214-7225.
张浩祯, 刘洋, 叶小梅, 张鸿宇, 赵苛苛, 朱飞, 孙小川, 奚永兰. 中链羧酸生产的优化与应用[J]. 化工进展, 2025, 44(12): 7214-7225.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2075
| 提纯技术 | 萃取产率 | 萃取效率/% | 参考文献 |
|---|---|---|---|
| 内联膜电解系统 | 610g/(m2·d) | 53.9±0.34 | [ |
| 电渗析系统 | (260±38)g/(m2·d) | 15±3.1 | [ |
| 油凝胶提取 | 8.59g/(L·d) | 87.39±0.96 | [ |
| 渗透法结合膜电解技术 | (1.7±0.6)g/(L·d) | 73 | [ |
| 颗粒化发酵高速链延伸 | 12.3g/(L·d) | 44.4 | [ |
| 在线萃取系统 | (143.4±14.8)mmol/(L·d) | 55 | [ |
| 提纯技术 | 萃取产率 | 萃取效率/% | 参考文献 |
|---|---|---|---|
| 内联膜电解系统 | 610g/(m2·d) | 53.9±0.34 | [ |
| 电渗析系统 | (260±38)g/(m2·d) | 15±3.1 | [ |
| 油凝胶提取 | 8.59g/(L·d) | 87.39±0.96 | [ |
| 渗透法结合膜电解技术 | (1.7±0.6)g/(L·d) | 73 | [ |
| 颗粒化发酵高速链延伸 | 12.3g/(L·d) | 44.4 | [ |
| 在线萃取系统 | (143.4±14.8)mmol/(L·d) | 55 | [ |
| 温度/℃ | pH | C/N | 水力停留时间/d | 产率/g·L-1 | 参考文献 |
|---|---|---|---|---|---|
| 30 | 5 | — | — | 18.585 | [ |
| 35 | 6 | — | — | 10.1 | [ |
| 37 | 7 | — | 2 | 4.9 | [ |
| 40 | 5~6.5 | — | — | 16.6 | [ |
| 50 | 6 | 35 | 4 | 1.89 | [ |
| 30 | 6.5~7.2 | — | 4 | 57.4 | [ |
| 温度/℃ | pH | C/N | 水力停留时间/d | 产率/g·L-1 | 参考文献 |
|---|---|---|---|---|---|
| 30 | 5 | — | — | 18.585 | [ |
| 35 | 6 | — | — | 10.1 | [ |
| 37 | 7 | — | 2 | 4.9 | [ |
| 40 | 5~6.5 | — | — | 16.6 | [ |
| 50 | 6 | 35 | 4 | 1.89 | [ |
| 30 | 6.5~7.2 | — | 4 | 57.4 | [ |
| 底物 | 电子供体 | 温度/℃ | pH | 最大产率/产量(己酸) | 参考文献 |
|---|---|---|---|---|---|
| 污泥 | 乙醇 | 40 | 5.4 | 9.80g/L | [ |
| 污泥 | 乙醇 | 37 | 7.1 | (5.28±0.18)g/L | [ |
| 污泥 | 乙醇 | 35 | 6.9 | 6.268g/L | [ |
| 污泥 | 乙醇 | 37 | 7 | 66.97mmol/L | [ |
| 污泥 | 乙醇 | 30 | 6.2 | 3.115g/(L·d) | [ |
| 猪粪 | 乳酸 | 30 | 6 | 7.733g/L | [ |
| 猪粪 | 乳酸 | 50 | 6 | 1.29g/(L·d) | [ |
| 猪粪 | 乙醇 | 35 | 6.5 | 27.6g/L | [ |
| 食物垃圾 | 乙醇 | 30 | 7.5 | 33.108g/L | [ |
| 食物垃圾 | 乙醇 | 30 | 5.5 | 4.667g/(L·d) | [ |
| 餐厨垃圾 | 乳酸、乙醇 | 35 | 7 | 18.443g/L | [ |
| 餐厨垃圾 | 乙醇 | 35 | 6.75 | (0.707±0.0395)g/g | [ |
| 底物 | 电子供体 | 温度/℃ | pH | 最大产率/产量(己酸) | 参考文献 |
|---|---|---|---|---|---|
| 污泥 | 乙醇 | 40 | 5.4 | 9.80g/L | [ |
| 污泥 | 乙醇 | 37 | 7.1 | (5.28±0.18)g/L | [ |
| 污泥 | 乙醇 | 35 | 6.9 | 6.268g/L | [ |
| 污泥 | 乙醇 | 37 | 7 | 66.97mmol/L | [ |
| 污泥 | 乙醇 | 30 | 6.2 | 3.115g/(L·d) | [ |
| 猪粪 | 乳酸 | 30 | 6 | 7.733g/L | [ |
| 猪粪 | 乳酸 | 50 | 6 | 1.29g/(L·d) | [ |
| 猪粪 | 乙醇 | 35 | 6.5 | 27.6g/L | [ |
| 食物垃圾 | 乙醇 | 30 | 7.5 | 33.108g/L | [ |
| 食物垃圾 | 乙醇 | 30 | 5.5 | 4.667g/(L·d) | [ |
| 餐厨垃圾 | 乳酸、乙醇 | 35 | 7 | 18.443g/L | [ |
| 餐厨垃圾 | 乙醇 | 35 | 6.75 | (0.707±0.0395)g/g | [ |
| [1] | 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6): 1168-1176. |
| WU Haowei, SUN Xiaoqi, LIANG Bowen, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. Journal of Agro-Environment Science, 2020, 39(06): 1168-1176. | |
| [2] | 王明利. 改革开放四十年我国畜牧业发展: 成就、经验及未来趋势[J]. 农业经济问题, 2018(8): 60-70. |
| WANG Mingli. China’s livestock industry development: Achievements, experiences and future trends[J]. Issues in Agricultural Economy, 2018(8): 60-70. | |
| [3] | LAMOLINARA Barbara, Amaury PÉREZ-MARTÍNEZ, Estela GUARDADO-YORDI, et al. Anaerobic digestate management, environmental impacts, and techno-economic challenges[J]. Waste Management, 2022, 140: 14-30. |
| [4] | 张静妮, 韩志刚, 郑丹, 等. 畜禽养殖废水处理技术动态与发展趋势[J]. 农业环境科学学报, 2021, 40(11): 2320-2329. |
| ZhANG Jingni, HAN Zhigang, ZHENG Dan, et al. Technical status and trends in animal wastewater treatment[J]. Journal of Agro-Environment Science, 2021, 40(11): 2320-2329. | |
| [5] | Elia TOMÁS-PEJÓ, Cristina GONZÁLEZ-FERNÁNDEZ, GRESES Silvia, et al. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 96. |
| [6] | SHI Xingdong, WU Lan, WEI Wei, et al. Insights into the microbiomes for medium-chain carboxylic acids production from biowastes through chain elongation[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(21): 3787-3812. |
| [7] | SOLIMAN Abdallah. From waste to energy: A techno-economic analysis and life cycle analysis of liquid biochemical production from wet wastes through enhanced anaerobic digestion[D]. Fort Collins, CO, USA: Colorado State University, 2022. |
| [8] | 刘翠, 吴元, 朱丽可, 等. 中链脂肪酸的研究进展[J]. 广东化工, 2021, 48(4): 60-61. |
| LIU Cui, WU Yuan, ZHU Like, et al. Progress in medium-chain fatty acids[J]. Guangdong Chemical Industry, 2021, 48(4): 60-61. | |
| [9] | STEINBUSCH Kirsten J J, HAMELERS Hubertus V M, PLUGGE Caroline M, et al. Biological formation of caproate and caprylate from acetate: Fuel and chemical production from low grade biomass[J]. Energy & Environmental Science, 2011, 4(1): 216-224. |
| [10] | WANG Yufen, ZHANG Zixin, WANG Xiaomin, et al. Medium-chain fatty acids production from sewage sludge through anaerobic fermentation: A critical review[J]. Chemical Engineering Journal, 2023, 477: 147138. |
| [11] | WU Qinglian, BAO Xian, GUO Wanqian, et al. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives[J]. Biotechnology Advances, 2019, 37(5): 599-615. |
| [12] | 杨金堂, 黄克和, 王建林, 等. 中链脂肪酸在畜牧业上应用的研究进展[J]. 畜牧与兽医, 2009, 41(5): 100-105. |
| YANG Jintang, HUANG Kehe, WANG Jianlin, et al. Advances in application of medium-chain fatty acid in animal husbandry[J]. Animal Husbandry & Veterinary Medicine, 2009, 41(5): 100-105. | |
| [13] | 王建军, 王恬. 中链脂肪酸的生物学特性及其在动物生产中的应用[J]. 动物营养学报, 2011, 23(7): 1073-1078. |
| WANG Jianjun, WANG Tian. Medium-chain fatty acids and their application in animal production[J]. Chinese Journal of Animal Nutrition, 2011, 23(7): 1073-1078. | |
| [14] | WANG Qingyan, ZHANG Panyue, BAO Shuai, et al. Chain elongation performances with anaerobic fermentation liquid from sewage sludge with high total solid as electron acceptor[J]. Bioresource Technology, 2020, 306: 123188. |
| [15] | ARHIN Samuel Gyebi, CESARO Alessandra, DI CAPUA Francesco, et al. Acidogenic fermentation of food waste to generate electron acceptors and donors towards medium-chain carboxylic acids production[J]. Journal of Environmental Management, 2023, 348: 119379. |
| [16] | Sharon VILLEGAS-RODRÍGUEZ, Germán BUITRÓN. Performance of native open cultures (winery effluents, ruminal fluid, anaerobic sludge and digestate) for medium-chain carboxylic acid production using ethanol and acetate[J]. Journal of Water Process Engineering, 2021, 40: 101784. |
| [17] | DE GROOF Vicky, COMA Marta, ARNOT Tom, et al. Medium chain carboxylic acids from complex organic feedstocks by mixed culture fermentation[J]. Molecules, 2019, 24(3): 398. |
| [18] | 吴凡, 江皓, 李叶青. 利用厌氧发酵技术合成中链羧酸的研究进展[J]. 环境工程, 2021, 39(8): 150-155. |
| WU Fan, JIANG Hao, LI Yeqing. Advancements in producing medium chain carboxylic acids via anaerobic digestion[J]. Environmental Engineering, 2021, 39(8): 150-155. | |
| [19] | 张艳艳, 白佳喆, 左剑恶. 己酸菌富集及其利用餐厨垃圾产己酸的研究[J]. 中国环境科学, 2022, 42(6): 2724-2733. |
| ZHANG Yanyan, BAI Jiazhe, ZUO Jian’e. Enrichment of caproate bacteria and its application in caproic acid production from food waste[J]. China Environmental Science, 2022, 42(6): 2724-2733. | |
| [20] | 丁子贞, 徐先宝, 欧阳创, 等. 生物炭促进餐厨垃圾发酵产己酸效能及机理研究[J]. 环境工程, 2022, 40(12): 29-36. |
| DING Zizhen, XU Xianbao, OUYANG Chuang, et al. Effect of biochar on caproate production during food waste fermentation and the mechanism[J]. Environmental Engineering, 2022, 40(12): 29-36. | |
| [21] | ANGENENT Largus T, RICHTER Hanno, BUCKEL Wolfgang, et al. Chain elongation with reactor microbiomes: Open-culture biotechnology to produce biochemicals[J]. Environmental Science & Technology, 2016, 50(6): 2796-2810. |
| [22] | 郭强, 牛冬杰, 程海静, 等. 沼渣的综合利用[J]. 中国资源综合利用, 2005, 23(12): 11-15. |
| GUO Qiang, NIU Dongjie, CHENG Haijing, et al. Comprehensive utilizing of biogas residue[J]. China Resources Comprehensive Utilization, 2005, 23(12): 11-15. | |
| [23] | 胡建林, 郭英, 董华林, 等. 沼液在水稻生产上的应用现状与展望[J]. 农业科技通讯, 2022(12): 197-199. |
| HU Jianlin, GUO Ying, DONG Hualin, et al. Application status and prospect of biogas slurry in rice production[J]. Bulletin of Agricultural Science and Technology, 2022(12): 197-199. | |
| [24] | 陈为, 孟红英, 王永军. 沼渣、沼液的养分含量及安全性研究[J]. 安徽农业科学, 2014, 42(23): 7960-7962. |
| CHEN Wei, MENG Hongying, WANG Yongjun. Study on nutrient contents and security of biogas residue and fluid[J]. Journal of Anhui Agricultural Sciences, 2014, 42(23): 7960-7962. | |
| [25] | WANG Yu, YU Guangwei, LIN Jiajia, et al. Synergistic hydrothermal treatment of food waste digestate residues and incineration fly ash: Dehydration performance and heavy metals safety[J]. Reaction Chemistry & Engineering, 2022, 7(8): 1797-1806. |
| [26] | LIU Jingxin, HUANG Simian, WANG Teng, et al. Evaluation on thermal treatment for sludge from the liquid digestion of restaurant food waste[J]. Renewable Energy, 2021, 179: 179-188. |
| [27] | LOHANI Sunil P, HAVUKAINEN Jouni. Anaerobic digestion: factors affecting anaerobic digestion process[J]. Waste bioremediation, 2017: 343-359. |
| [28] | 陈畅, 李成. 生物化学中厌氧消化代谢途径的教学实践[J]. 生物工程学报, 2022, 38(12): 4765-4778. |
| CHEN Chang, LI Cheng. Anaerobic digestion pathways in biochemistry: A teaching practice[J]. Chinese Journal of Biotechnology, 2022, 38(12): 4765-4778. | |
| [29] | 袁志强, 李超, 苑荣雪, 等. 利用富乙酸剩余污泥厌氧发酵液产中链脂肪酸[J]. 环境工程学报, 2021, 15(10): 3345-3357. |
| YUAN Zhiqiang, Li Chao, YUAN Rongxue, et al. Conversion of acetate-rich waste activated sludge anaerobic fermentation liquor into medium-chain fatty acids[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3345-3357. | |
| [30] | ZHANG Yanyan, BAI Jiazhe, ZUO Jian’e. Performance and mechanisms of medium-chain fatty acid production by anaerobic fermentation of food waste without external electron donors[J]. Bioresource Technology, 2023, 374: 128735. |
| [31] | 张会敏, 邢新会, 王越, 等. 浓香型白酒发酵体系中己酸菌的研究进展[J]. 食品科学, 2024, 45(9): 314-321. |
| ZHANG Huimin, XING Xinhui, WANG Yue, et al. Research progress on caproic acid-producing bacteria in Chinese strong-flavor baijiu fermentation ecosystem [J]. Food Science, 2024, 45(9): 314-321. | |
| [32] | CLOMBURG James M, CONTRERAS Stephanie C, CHOU Alexander, et al. Combination of type Ⅱ fatty acid biosynthesis enzymes and thiolases supports a functional β-oxidation reversal[J]. Metabolic Engineering, 2018, 45: 11-19. |
| [33] | YIN Yanan, HU Yuming, WANG Jianlong. Co-fermentation of sewage sludge and lignocellulosic biomass for production of medium-chain fatty acids[J]. Bioresource Technology, 2022, 361: 127665. |
| [34] | 房立霞, 冯雪茹, 刘夺, 等. 大肠杆菌合成中链脂肪酸研究进展[J]. 科学通报, 2022, 67(25): 3014-3023. |
| FANG Lixia, Feng Xueru, Liu Duo, et al. Advances on medium-chain fatty acids synthesis in Escherichia coli [J]. Chinese Science Bulletin, 2022, 67: 3014-3023. | |
| [35] | TORELLA Joseph P, FORD Tyler J, KIM Scott N, et al. Tailored fatty acid synthesis via dynamic control of fatty acid elongation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11290-11295. |
| [36] | XU Jiajie, GUZMAN Juan J L, ANDERSEN Stephen J, et al. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis[J]. Chemical Communications, 2015, 51(31): 6847-6850. |
| [37] | XU Jiajie, GUZMAN Juan J L, ANGENENT Largus T. Direct medium-chain carboxylic acid oil separation from a bioreactor by an electrodialysis/phase separation cell[J]. Environmental Science & Technology, 2021, 55(1): 634-644. |
| [38] | YIN Qidong, WEN Qu, TAN Li, et al. Combining chain elongation and oleogel extraction for the production and recovery of caproate from beef cattle manure wastewater[J]. Resources, Conservation and Recycling, 2024, 202: 107405. |
| [39] | CARVAJAL-ARROYO José María, ANDERSEN Stephen J, Ramon GANIGUÉ, et al. Production and extraction of medium chain carboxylic acids at a semi-pilot scale[J]. Chemical Engineering Journal, 2021, 416: 127886. |
| [40] | CARVAJAL-ARROYO José M, CANDRY Pieter, ANDERSEN Stephen J, et al. Granular fermentation enables high rate caproic acid production from solid-free thin stillage[J]. Green Chemistry, 2019, 21(6): 1330-1339. |
| [41] | Eduardo HERNÁNDEZ-CORREA, DE MARÍA CUERVO-LÓPEZ Flor, CERVANTES Francisco Javier, et al. Efficient conversion of wine lees into medium-chain carboxylic acids by mixed culture using an in-line extraction system[J]. Journal of Water Process Engineering, 2023, 55: 104263. |
| [42] | CYSNEIROS Denise, BANKS Charles J, HEAVEN Sonia, et al. The effect of pH control and ‘hydraulic flush’on hydrolysis and volatile fatty acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate[J]. Bioresource Technology, 2012, 123: 263-271. |
| [43] | LIU Yuhao, HE Pinjing, SHAO Liming, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119: 150-159. |
| [44] | GEHRING Tito A, CAVALCANTE Willame A, COLARES Aldo S, et al. Optimal pH set point for simultaneous production and pertraction of n-caproic acid: An experimental and simulation study[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(12): 3105-3116. |
| [45] | SUDIARTHA Gede Adi Wiguna, IMAI Tsuyoshi, CHAIRATTANAMA NOKORN Prapaipid, et al. Unveiling the impact of temperature shift on microbial community dynamics and metabolic pathways in anaerobic digestion[J]. Process Safety and Environmental Protection, 2024, 186: 1505-1515. |
| [46] | BAO Shuai, WANG Qingyan, ZHANG Panyue, et al. Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: Insight into carbon balance and microbial community[J]. Energies, 2019, 12(19): 3720. |
| [47] | WANG Ziyu, HE Huiban, YAN Jing, et al. Influence of temperature fluctuations on anaerobic digestion: Optimum performance is achieved at 45℃[J]. Chemical Engineering Journal, 2024, 492: 152331. |
| [48] | 王晓鑫, 王建, 马峰, 等. 中高温鸡粪厌氧消化微生物调节机制对比及耐热机理研究[J]. 环境保护科学, 2023, 49(4): 74-84. |
| WANG Xiaoxin, WANG Jian, MA Feng, et al. Comparison of microbial regulation mechanisms and heat-resistant mechanism of anaerobic digestion of chicken manure at medium and high temperature[J]. Environmental Protection Science, 2023, 49(4): 74-84. | |
| [49] | HANIA Wajdi BEN, GODBANE Ramzi, POSTEC Anne, et al. Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt_6): 1377-1382. |
| [50] | Agler M T, Spirito C M, Usack J G, et al. Development of a highly specific and productive process for n-caproic acid production: Applying lessons from methanogenic microbiomes[J]. Water science and technology, 2014, 69(1): 62-68. |
| [51] | 许一平. HRT对厌氧消化系统运行效能的影响及丙酸氧化菌群的结构解析[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
| XU Yiping. Effect of HRT on the performance and propionate-oxidizing bacterta inanaerobic digester systems[D]. Harbin: Harbin Institute of Technology, 2011. | |
| [52] | ROGHAIR Mark, LIU Yuchen, STRIK David P B T B, et al. Development of an effective chain elongation process from acidified food waste and ethanol into n-caproate[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6: 50. |
| [53] | 朱文彬, 高明, 阴紫荷, 等. 有机废物厌氧发酵生物合成己酸研究进展[J]. 环境工程, 2020, 38(01): 128-34. |
| ZHU Wenbin, GAO Ming, YIN Zihe, et al. Research progress on caproic acid production from organic waste by anaerobic fermentation[J]. Environmental Engineering, 2020, 38(1): 128-134. | |
| [54] | GROOTSCHOLTEN T I M, STEINBUSCH K J J, HAMELERS H V M, et al. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter[J]. Bioresource technology, 2013, 136: 735-738. |
| [55] | GROOTSCHOLTEN T I M, STRIK D P B T B, STEINBUSCH K J J, et al. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol[J]. Applied Energy, 2014, 116: 223-229. |
| [56] | WANG Jianlong, YIN Yanan. Biological production of medium-chain carboxylates through chain elongation: An overview[J]. Biotechnology Advances, 2022, 55: 107882. |
| [57] | WU Qinglian, GUO Wanqian, YOU Shijie, et al. Concentrating lactate-carbon flow on medium chain carboxylic acids production by hydrogen supply[J]. Bioresource Technology, 2019, 291: 121573. |
| [58] | ZHENG Zehui, CAI Yafan, ZHANG Yue, et al. The effects of C/N (10—25) on the relationship of substrates, metabolites, and microorganisms in “inhibited steady-state” of anaerobic digestion[J]. Water Research, 2021, 188: 116466. |
| [59] | KHALID Azeem, ARSHAD Muhammad, ANJUM Muzammil, et al. The anaerobic digestion of solid organic waste[J]. Waste Management, 2011, 31(8): 1737-1744. |
| [60] | 杨兴盛, 王尚, 何晴, 等. 典型有机固废厌氧消化微生物研究现状与发展方向[J]. 生物工程学报, 2021, 37(10): 3425-3438. |
| YANG Xingsheng, WANG Shang, HE Qing, et al. Microorganisms in the typical anaerobic digestion system of organic solid wastes: A review[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3425-3438. | |
| [61] | BI Shaojie, QIAO Wei, XIONG Linpeng, et al. Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway[J]. Renewable Energy, 2020, 146: 2380-2389. |
| [62] | 孟伟, 查金, 张思梦, 等. 餐厨垃圾厌氧消化过程氨氮抑制及缓解办法综述[J]. 环境工程, 2019, 37(12): 177-182. |
| MENG Wei, ZHA Jin, ZHANG Simeng, et al. A review of ammonia inhibition and its mitigation methods for anaerobic digestion of food waste[J]. Environmental Engineering, 2019, 37(12): 177-182. | |
| [63] | ZHANG Tong, MAO Chunlan, ZHAI Ningning, et al. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk[J]. Waste Management, 2015, 35: 119-126. |
| [64] | M Edgar Fernando CASTILLO, CRISTANCHO Diego Edison, VICTOR ARELLANO A. Study of the operational conditions for anaerobic digestion of urban solid wastes[J]. Waste Management, 2006, 26(5): 546-556. |
| [65] | ZHANG Zhikai, ZHANG Guangyi, LI Wangliang, et al. Enhanced biogas production from sorghum stem by co-digestion with cow manure[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9153-9158. |
| [66] | XU Jiajie, HAO Jiuxiao J L, GUZMAN Juan J L, et al. Temperature-phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid: No external e-donor [J]. Joule, 2018, 2(2): 280-295. |
| [67] | DE GROOF Vicky, COMA Marta, ARNOT Tom C, et al. Adjusting organic load as a strategy to direct single-stage food waste fermentation from anaerobic digestion to chain elongation[J]. Processes, 2020, 8(11): 1487. |
| [68] | FERNANDO-FONCILLAS C, VARRONE C. Effect of reactor operating conditions on carboxylate production and chain elongation from co-fermented sludge and food waste [J]. Journal of Cleaner Production, 2021, 292: 126009. |
| [69] | ZHU Xiaoyu, ZHOU Yan, WANG Yi, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6[J]. Biotechnology for Biofuels, 2017, 10: 102. |
| [70] | ZHANG Wanqin, WANG Shunli, YIN Fubin, et al. Medium-chain carboxylates production from co-fermentation of swine manure and corn stalk silage via lactic acid: Without external electron donors[J]. Chemical Engineering Journal, 2022, 439: 135751. |
| [71] | WU Qinglian, FENG Xiaochi, CHEN Ying, et al. Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process[J]. Journal of Hazardous Materials, 2021, 402: 123471. |
| [72] | WU Shulin, SUN Jing, CHEN Xueming, et al. Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations[J]. Water Research, 2020, 169: 115218. |
| [73] | WANG Yufen, HE Yanying, ZHENG Kaixin, et al. Ferric oxide stimulates medium-chain carboxylic acids synthesis from waste activated sludge via ethanol-driven chain elongation: Mechanisms and implications[J]. Journal of Cleaner Production, 2023, 389: 136044. |
| [74] | 李鑫, 张传义, 杨培娴. 铁碳微电解强化污泥厌氧发酵合成中链羧酸性能的研究[C]//2023年有机固废处理与资源化利用大会论文集. 2023: 141-148. |
| LI Xin. ZHANG Chuanyi, YANG Peixian. Study on the performance of iron-carbon microelectrolysis to enhance the synthesis of medium-chain carboxylic acids by anaerobic fermentation of sludge[C]// Proceedings of Organic Solid Waste Treatment and Resource Utilization Conference 2023. 2023: 141-148. | |
| [75] | 董红敏, 张万钦, 尹福斌, 等. 一种农业废弃物通过发酵方式生产中链羧酸的方法与应用: CN112063661A[P]. 2020-12-11. |
| DONG Hongmin, ZHANG Wanqin, YIN Fubin, et al. Method for producing medium-chain carboxylic acid from agricultural wastes in fermentation mode and application: CN112063661A[P]. 2020-12-11. | |
| [76] | ZHANG Wanqin, WANG Shunli, YIN Fubin, et al. Produce individual medium chain carboxylic acids (MCCA) from swine manure: Performance evaluation and economic analysis[J]. Waste Management, 2022, 144: 255-262. |
| [77] | YU Jiangnan, HUANG Zhenxing, WU Peng, et al. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia[J]. Bioresource Technology, 2019, 284: 398-405. |
| [78] | AGLER Matthew T, SPIRITO Catherine M, USACK Joseph G, et al. Chain elongation with reactor microbiomes: Upgrading dilute ethanol to medium-chain carboxylates[J]. Energy & Environmental Science, 2012, 5(8): 8189-8192. |
| [79] | 王冰. 餐厨垃圾厌氧发酵产中链脂肪酸的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
| WANG Bing. Study on the production of medium-chain fatty acids by anaerobic fermentation of kitchen waste[D]. Harbin: Harbin Institute of Technology, 2019. | |
| [80] | WANG Qingyan, ZHANG Guangming, WANG Xinyi, et al. Promoting chain elongation efficiency from food waste by refluxing chain elongation fermentation liquid[J]. Journal of Cleaner Production, 2022, 368: 133220. |
| [81] | SAKARIKA Myrsini, REGUEIRA Alberte, RABAEY Korneel, et al. Thermophilic caproic acid production from grass juice by sugar-based chain elongation[J]. Science of the Total Environment, 2023, 860: 160501. |
| [82] | 李国辉, 毛银. 微生物合成中链二元羧酸的代谢工程研究进展[J]. 食品与发酵工业, 2021, 47(20): 297-302. |
| LI Guohui, MAO Yin. Advances in metabolic engineering of microorganisms for medium-chain dicarboxylic acids biosynthesis[J]. Food and Fermentation Industries, 2021, 47(20): 297-302. | |
| [83] | 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品添加剂 己酸: [S]. 北京: 中国标准出版社, 2015. |
| National Health and Family Planning Commission of the People’s Republic of China. National food safety standard: Food additives: Caproic acid: [S]. Beijing: Standards Press of China, 2015. | |
| [84] | 张天爽, 赵华. 己酸的生产应用研究进展[J]. 山西化工, 2022, 42(1): 48-50. |
| ZHANG Tianshuang, ZHAO Hua. Research progress in the production and application of hexanoic acid[J]. Shanxi Chemical Industry, 2022, 42(1): 48-50. | |
| [85] | 钱韻芳, 杨胜平, 谢晶. 4-己基间苯二酚对凡纳滨对虾3种腐败菌的抑菌活性及虾品质的影响[J]. 食品科学, 2017, 38(21): 21-29. |
| QIAN Yunfang, YANG Shengping, XIE Jing. Antibacterial activity of 4-hexylresorcinol against three spoilage bacteria in culture and its effect on the quality of Pacific white shrimp[J]. Food Science, 2017, 38(21): 21-29. | |
| [86] | LIU Heng, ZHANG Qing, HE Xinheng, et al. Structural insights into ligand recognition and activation of the medium-chain fatty acid-sensing receptor GPR84[J]. Nature Communications, 2023, 14(1): 3271. |
| [87] | 张静, 丁怡. HPLC法测定氨基己酸注射液的含量及有关物质[J]. 今日药学, 2019, 29(2): 101-104. |
| ZHANG Jing, DING Yi. Determination of the content and related substances of aminocaproic acid injection by HPLC[J]. Pharmacy Today, 2019, 29(2): 101-104. | |
| [88] | YU Delin, CHENG Shuanglan, CAO Fang, et al. Unveiling the bioelectrocatalyzing behaviors and microbial ecological mechanisms behind caproate production without exogenous electron donor[J]. Environmental Research, 2022, 215: 114077. |
| [89] | 马鸿志, 武文宇, 于子强, 等. 微生物合成己酸的基本原理: 能量代谢及影响因素[J]. 工程科学学报, 2023, 45(4): 681-692. |
| MA hongzhi, WU wenyu, YU ziqiang, et al. Mechanism of caproic acid biosynthesis: energy metabolism and influencing factors[J]. Chinese Journal of Engineering, 2023, 45(4): 681-692. | |
| [90] | YIN Yanan, ZHANG Yifeng, KARAKASHEV Dimitar Borisov, et al. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources[J]. Bioresource Technology, 2017, 241: 638-644. |
| [91] | WALTERS D R, WALKER R L, WALKER K C. Lauric acid exhibits antifungal activity against plant pathogenic fungi[J]. Journal of Phytopathology, 2003, 151(4): 228-230. |
| [92] | Paz ARANEGA-BOU, DE LA O LEYVA Maria, FINITI Ivan, et al. Priming of plant resistance by natural compounds. Hexanoic acid as a model[J]. Frontiers in Plant Science, 2014, 5: 488. |
| [93] | LLORENS Eugenio, Gemma CAMAÑES, Leonor LAPEÑA, et al. Priming by hexanoic acid Induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles[J]. Frontiers in Plant Science, 2016, 7: 495. |
| [94] | ZHANG Binbin, DU Hao, SUN Maoxiang, et al. Comparison of lauric acid and 12-hydroxylauric acid in the alleviation of drought stress in peach (Prunus persica (L.) Batsch)[J]. Frontiers in Plant Science, 2022, 13: 1025569. |
| [95] | 张彬彬. 短中链脂肪酸对桃树生长、抗旱性及果实品质的影响[D]. 泰安: 山东农业大学, 2023. |
| ZHANG Binbin. Effects of short and medium chain fatty acids (SMCFAs) on growth, drought resistance and fruit quality of peach tree[D]. Tai’an: Shandong Agricultural University, 2023 | |
| [96] | 姜伊娜, 王双双, 邹欣芮, 等. 一种月桂酸甲酯在增强番茄植株抗旱性中的应用: CN118000203A[P]. 2024-05-10. |
| JIANG Yina, WANG Shuangshuang, ZOU Xinrui, et al. Application of methyl laurate in enhancing drought resistance of tomato plants: CN118000203A[P]. 2024-05-10. | |
| [97] | 庞勋, 梁冉, 刘继国, 等. 生物有机肥对农田土壤特性, 作物产量与品质影响的研究进展[J]. 汉斯-土壤科学杂志, 2023(11): 100. |
| PANG Xun, LIANG Ran, LIU Jiguo, et al. Research progress on effects of bio-organic fertilizer on soil characteristics of farmland, crop yield and quality. Hans Journal of Soil Science, 2023(11): 100. | |
| [98] | Ker-Sin NG, BAMBACE Maria Florencia, SCHWAB Clarissa. Microbially produced short-chain carboxylic acids are ancient food biopreservatives with complex mode of action[J]. Current Opinion in Food Science, 2023, 52: 101066. |
| [99] | 曾谦, 倪哲, 陈君, 等. 有机固废沼渣特性及其资源化探究[J]. 环境工程, 2022, 40(12): 61-70. |
| ZENG Qian, NI Zhe, CHEN Jun, et al. Organic waste digestate: A review of its characteristics and resources recovery[J]. Environmental Engineering, 2022, 40(12): 61-70. | |
| [100] | CHEN Ting, QIU Xiaopeng, FENG Huajun, et al. Solid digestate disposal strategies to reduce the environmental impact and energy consumption of food waste-based biogas systems[J]. Bioresource Technology, 2021, 325: 124706. |
| [101] | 叶沁辉, 陈红, 于鑫, 等. 沼渣生物炭的制备及资源化利用研究进展[J]. 化工进展, 2023, 42(12): 6554-6566. |
| YE Qinhui, CHEN Hong, YU Xin, et al. Preparation and resource utilization of biogas residue biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6554-6566. | |
| [102] | 王玮, 孙岩斌, 周祺, 等. 国内畜禽厌氧消化沼液还田研究进展[J]. 中国沼气, 2015, 33(2): 51-57. |
| WANG Wei, SUN Yanbin, ZHOU Qi, et al. A review on irrigation of biogas slurry from livestock manure anaerobic fermentation in China[J]. China Biogas, 2015, 33(2): 51-57. | |
| [103] | 宋大刚, 唐雪, 龙玲. 沼渣生物炭还田对土壤甘蓝产量及品质影响[J]. 中国沼气, 2023, 41(2): 39-44. |
| SONG Dagang, TANG Xue, LONG Ling. Effects of biogas residue biochar on yield and quality of cabbage in soil[J]. China Biogas, 2023, 41(2): 39-44. | |
| [104] | HE Jing, ZHU Nengmin, XU Yansheng, et al. The microbial mechanisms of enhanced humification by inoculation with Phanerochaete chrysosporium and Trichoderma longibrachiatum during biogas residues composting[J]. Bioresource Technology, 2022, 351: 126973. |
| [105] | 曹汝坤, 陈灏, 赵玉柱. 沼液资源化利用现状与新技术展望[J]. 中国沼气, 2015, 33(2): 42-50. |
| CAO Rukun, CHEN Hao, ZHAO Yuzhu. Resource utilization of biogas slurry: Current status and future prospects[J]. China Biogas, 2015, 33(2): 42-50. | |
| [106] | ZHOU Yunyi, FENG Ru, ZHU Pan, et al. Review of pretreatment technology before biogas slurry used as resource in China[J]. Advances in Environmental Protection, 2020, 10(2): 249-258. |
| [107] | 吴慧斌, 刘丁才, 许剑锋. 沼液中化学成分的研究[J]. 天然产物研究与开发, 2015, 27(1): 18-21. |
| WU Huibin, LIU Dingcai, XU Jianfeng. Chemical constituents of biogas slurry[J]. Natural Product Research and Development, 2015, 27(1): 18-21. | |
| [108] | 韩敏, 刘克锋, 王顺利, 等. 沼液的概念、成分和再利用途径及风险[J]. 农学学报, 2014, 4(10): 54-57. |
| HAN Min, LIU Kefeng, WANG Shunli, et al. Definition, ingredient, approaches and risks for reuse in biogas slurry[J]. Journal of Agriculture, 2014, 4(10): 54-57. | |
| [109] | WANG Zichen, SANUSI Isaac A, WANG Jidong, et al. Developments and prospects of farmland application of biogas slurry in china—A review[J]. Microorganisms, 2023, 11(11): 2675. |
| [110] | WANG Qingyan, YANG Nan, CAI Yajing, et al. Advances in understanding entire process of medium chain carboxylic acid production from organic wastes via chain elongation[J]. Chemosphere, 2023, 339: 139723. |
| [1] | ZHANG Hanlin, YUE Xuehai, LIU Junxi, YIN Fengjun. Fabrication of high stability electrocatalyst for oxygen evolution reaction by Ru-Sr-Ir electrodeposition [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 243-251. |
| [2] | WANG Weihao, WU Xianhao, ZHOU Ying, FENG Xiangdong, HU Daqing, LU Hanfeng. Aqueous coupled advanced oxidation for VOCs treatment: Mechanism, applications and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 478-491. |
| [3] | XUE Jialin, LI Wenxuan, WU Xintong, WANG Xuechao, WANG Kexin, XIE Huina, LI Jie. Research progress on iron-based autotrophic biological denitrification technology [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 504-517. |
| [4] | YE Herong, TAO Zhineng, QIU Tong. Research status of battery-swapping scheduling optimization for new-energy heavy-duty trucks [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 1-7. |
| [5] | YIN Xiaoyun, ZHU Jin, LIU Chunyan, ZHANG Jintao, XU Yuan, ZHU Yingru, SU Ming, SUN Yue, SUN Jie, YUAN Ying. Energy optimization of CPS sulfur recovery unit based on Plackett-Burman design and response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 124-133. |
| [6] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [7] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [8] | DONG Fenglian, LI Peng, WEI Zhiwei, SUN Xin, XU Hekai, HE Chang. Optimization of mixing processing considering crude oil procurement selection [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4648-4656. |
| [9] | HUANG Xukun, GE Jijun, XU Pan, BI Rongshan, LI Guoxuan. Simulation and optimization of polyarylester multi-stage countercurrent washing process [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4680-4687. |
| [10] | HUANG Lingjun, ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang, WANG Qili. Simultaneous optimization of hydrogen network with CO₂ hydrogenation to methanol process based on evolutionary response surface method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4688-4700. |
| [11] | ZHAO Xiangyu, XU Dongyu, CHEN Zhengyu, XU Chunming, ZHANG Linzhou. Development and optimization of a molecular-level model for methanol-to-olefins (MTO) reaction-regeneration process [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4785-4794. |
| [12] | FENG Siyao, PAN Yanqiu, MA Jianing, SUN Yanji. Construction of diesel molecule reconstruction model and kinetic model of diesel hydrofining reactions at the molecular level [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4852-4861. |
| [13] | LI Yanping, YANG Tao, WANG Hongxun, ZHANG Cheng, WEN Guosheng, HAN Zhicheng, LAN Gongjia, YAN Dazhou. Reaction molecular dynamics simulation of the thermal decomposition and reduction system of trichlorosilane in a hydrogen atmosphere [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4322-4330. |
| [14] | HUANG Ke’er, LIU Jiahao, LI Haoming, ZHOU Tianhang, GAO Jinsen, LAN Xingying. Self-diffusion coefficients in the process of carbon capture by amine solvents based on molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4352-4364. |
| [15] | WU Bo, MA Linxuan, ZHANG Mingfeng, CAO Lijuan, ZHOU Lei, WANG Xuezhong. Prediction of hydrotalcite particle size distribution based on machine learning ultrasonic attenuation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4365-4374. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |