Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7338-7348.DOI: 10.16085/j.issn.1000-6613.2024-2039
• Chemical industry park • Previous Articles
WANG Xilin(
), BI Mingshu, REN Jingjie(
)
Received:2024-12-16
Revised:2025-01-20
Online:2026-01-06
Published:2025-12-25
Contact:
REN Jingjie
通讯作者:
任婧杰
作者简介:王曦林(2000—),女,硕士研究生,研究方向为罐区多米诺燃爆事故。E-mail:22245306@mail.dlut.edu.cn。
基金资助:CLC Number:
WANG Xilin, BI Mingshu, REN Jingjie. Failure time prediction model of LPG spherical tank under fire environment[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7338-7348.
王曦林, 毕明树, 任婧杰. 火灾环境下液化石油气球罐的失效时间预测模型[J]. 化工进展, 2025, 44(12): 7338-7348.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2039
| 场景编号 | 火灾区域 | 火源中心与目标储罐球心的间距/m | 目标储罐接收的最大热辐射强度/kW·m-2 | ||
|---|---|---|---|---|---|
| X | Y | Z | |||
| 1 | (-19.7, 19.7) | (12, 34) | (13, -11.8) | 11 | 40 |
| 2 | (-19.7, 19.7) | (12, 32) | (13, -11.8) | 10 | 51 |
| 3 | (-19.7, 19.7) | (12, 28) | (13, -11.8) | 8 | 58 |
| 4 | (-19.7, 19.7) | (12, 26.5) | (13, -11.8) | 7.25 | 65 |
| 5 | (-19.7, 19.7) | (12, 25) | (13, -11.8) | 6.5 | 71 |
| 6 | (-19.7, 19.7) | (12, 24) | (13, -11.8) | 6 | 74 |
| 7 | (-19.7, 19.7) | (12, 23) | (13, -11.8) | 5.5 | 80 |
| 8 | (-19.7, 19.7) | (12, 22) | (13, -11.8) | 5 | 85 |
| 9 | (-19.7, 19.7) | (12, 20) | (13, -11.8) | 4 | 91 |
| 10 | (-19.7, 19.7) | (12, 19) | (13, -11.8) | 3.5 | 99 |
| 场景编号 | 火灾区域 | 火源中心与目标储罐球心的间距/m | 目标储罐接收的最大热辐射强度/kW·m-2 | ||
|---|---|---|---|---|---|
| X | Y | Z | |||
| 1 | (-19.7, 19.7) | (12, 34) | (13, -11.8) | 11 | 40 |
| 2 | (-19.7, 19.7) | (12, 32) | (13, -11.8) | 10 | 51 |
| 3 | (-19.7, 19.7) | (12, 28) | (13, -11.8) | 8 | 58 |
| 4 | (-19.7, 19.7) | (12, 26.5) | (13, -11.8) | 7.25 | 65 |
| 5 | (-19.7, 19.7) | (12, 25) | (13, -11.8) | 6.5 | 71 |
| 6 | (-19.7, 19.7) | (12, 24) | (13, -11.8) | 6 | 74 |
| 7 | (-19.7, 19.7) | (12, 23) | (13, -11.8) | 5.5 | 80 |
| 8 | (-19.7, 19.7) | (12, 22) | (13, -11.8) | 5 | 85 |
| 9 | (-19.7, 19.7) | (12, 20) | (13, -11.8) | 4 | 91 |
| 10 | (-19.7, 19.7) | (12, 19) | (13, -11.8) | 3.5 | 99 |
| 设计参数 | 数值 |
|---|---|
| 结构型式 | 五带混合式 |
| 球壳与支柱的连接 | 赤道正切式,加U形托板结构型式 |
| 直径/m | 19.7 |
| 球壳厚度/mm | 46 |
| 支柱数量及规格 | 14个ϕ600mm×16mm |
支柱底板地面至球壳 赤道平面的距离/mm | 11800 |
| 托板直径/mm | 400 |
| 托板厚度/mm | 15 |
| 底板直径/mm | 1000 |
| 底板厚度/mm | 50 |
| 设计参数 | 数值 |
|---|---|
| 结构型式 | 五带混合式 |
| 球壳与支柱的连接 | 赤道正切式,加U形托板结构型式 |
| 直径/m | 19.7 |
| 球壳厚度/mm | 46 |
| 支柱数量及规格 | 14个ϕ600mm×16mm |
支柱底板地面至球壳 赤道平面的距离/mm | 11800 |
| 托板直径/mm | 400 |
| 托板厚度/mm | 15 |
| 底板直径/mm | 1000 |
| 底板厚度/mm | 50 |
| 工况编号 | 接收最大热辐射强度/kW·m-2 | 充装率/% | 球壳失效时间/s | 支柱失效时间/s |
|---|---|---|---|---|
| 1 | 40 | 20 | 512 | 291 |
| 2 | 40 | 40 | 510 | 290 |
| 3 | 40 | 60 | 509 | 289 |
| 4 | 40 | 85 | 501 | 287 |
| 5 | 51 | 20 | 430 | 283 |
| 6 | 51 | 40 | 422 | 282 |
| 7 | 51 | 60 | 421 | 281 |
| 8 | 51 | 85 | 413 | 280 |
| 9 | 58 | 20 | 302 | 198 |
| 10 | 58 | 40 | 301 | 196 |
| 11 | 58 | 60 | 300 | 194 |
| 12 | 58 | 85 | 299 | 191 |
| 13 | 65 | 20 | 268 | 179 |
| 14 | 65 | 40 | 260 | 178 |
| 15 | 65 | 60 | 259 | 177 |
| 16 | 65 | 85 | 258 | 174 |
| 17 | 71 | 20 | 252 | 172 |
| 18 | 71 | 40 | 250 | 171 |
| 19 | 71 | 60 | 249 | 170 |
| 20 | 71 | 85 | 248 | 169 |
| 21 | 74 | 20 | 249 | 170 |
| 22 | 74 | 40 | 248 | 168 |
| 23 | 74 | 60 | 240 | 167 |
| 24 | 74 | 85 | 239 | 166 |
| 25 | 80 | 20 | 248 | 163 |
| 26 | 80 | 40 | 240 | 162 |
| 27 | 80 | 60 | 238 | 161 |
| 28 | 80 | 85 | 237 | 160 |
| 29 | 85 | 20 | 234 | 161 |
| 30 | 85 | 40 | 233 | 160 |
| 31 | 85 | 60 | 232 | 159 |
| 32 | 85 | 85 | 231 | 158 |
| 33 | 91 | 20 | 213 | 151 |
| 34 | 91 | 40 | 212 | 150 |
| 35 | 91 | 60 | 209 | 149 |
| 36 | 91 | 85 | 208 | 148 |
| 37 | 99 | 20 | 209 | 147 |
| 38 | 99 | 40 | 205 | 146 |
| 39 | 99 | 60 | 201 | 145 |
| 40 | 99 | 85 | 200 | 144 |
| 工况编号 | 接收最大热辐射强度/kW·m-2 | 充装率/% | 球壳失效时间/s | 支柱失效时间/s |
|---|---|---|---|---|
| 1 | 40 | 20 | 512 | 291 |
| 2 | 40 | 40 | 510 | 290 |
| 3 | 40 | 60 | 509 | 289 |
| 4 | 40 | 85 | 501 | 287 |
| 5 | 51 | 20 | 430 | 283 |
| 6 | 51 | 40 | 422 | 282 |
| 7 | 51 | 60 | 421 | 281 |
| 8 | 51 | 85 | 413 | 280 |
| 9 | 58 | 20 | 302 | 198 |
| 10 | 58 | 40 | 301 | 196 |
| 11 | 58 | 60 | 300 | 194 |
| 12 | 58 | 85 | 299 | 191 |
| 13 | 65 | 20 | 268 | 179 |
| 14 | 65 | 40 | 260 | 178 |
| 15 | 65 | 60 | 259 | 177 |
| 16 | 65 | 85 | 258 | 174 |
| 17 | 71 | 20 | 252 | 172 |
| 18 | 71 | 40 | 250 | 171 |
| 19 | 71 | 60 | 249 | 170 |
| 20 | 71 | 85 | 248 | 169 |
| 21 | 74 | 20 | 249 | 170 |
| 22 | 74 | 40 | 248 | 168 |
| 23 | 74 | 60 | 240 | 167 |
| 24 | 74 | 85 | 239 | 166 |
| 25 | 80 | 20 | 248 | 163 |
| 26 | 80 | 40 | 240 | 162 |
| 27 | 80 | 60 | 238 | 161 |
| 28 | 80 | 85 | 237 | 160 |
| 29 | 85 | 20 | 234 | 161 |
| 30 | 85 | 40 | 233 | 160 |
| 31 | 85 | 60 | 232 | 159 |
| 32 | 85 | 85 | 231 | 158 |
| 33 | 91 | 20 | 213 | 151 |
| 34 | 91 | 40 | 212 | 150 |
| 35 | 91 | 60 | 209 | 149 |
| 36 | 91 | 85 | 208 | 148 |
| 37 | 99 | 20 | 209 | 147 |
| 38 | 99 | 40 | 205 | 146 |
| 39 | 99 | 60 | 201 | 145 |
| 40 | 99 | 85 | 200 | 144 |
| [1] | KHAN Faisal I, ABBASI S A. Models for Domino effect analysis in chemical process industries[J]. Process Safety Progress, 1998, 17(2): 107-123. |
| [2] | COZZANI Valerio, SALZANO Ernesto. The quantitative assessment of Domino effects caused by overpressure Part Ⅰ. Probit models[J]. Journal of Hazardous Materials, 2004, 107(3): 67-80. |
| [3] | COZZANI Valerio, SALZANO Ernesto. The quantitative assessment of Domino effect caused by overpressure. Part Ⅱ. Case studies[J]. Journal of Hazardous Materials, 2004, 107(3): 81-94. |
| [4] | COZZANI Valerio, GUBINELLI Gianfilippo, ANTONIONI Giacomo, et al. The assessment of risk caused by Domino effect in quantitative area risk analysis[J]. Journal of Hazardous Materials, 2005, 127(1/2/3): 14-30. |
| [5] | ZHANG Mingguang, JIANG Juncheng. An improved probit method for assessment of Domino effect to chemical process equipment caused by overpressure[J]. Journal of Hazardous Materials, 2008, 158(2/3): 280-286. |
| [6] | SUN Dongliang, HUANG Guangtuan, JIANG Juncheng, et al. Study on the rationality and validity of probit models of Domino effect to chemical process equipment caused by overpressure[J]. Journal of Physics: Conference Series, 2013, 423: 012002. |
| [7] | MUKHIM Euginia Diana, ABBASI Tasneem, TAUSEEF S M, et al. Domino effect in chemical process industries triggered by overpressure — Formulation of equipment-specific probits[J]. Process Safety and Environmental Protection, 2017, 106: 263-273. |
| [8] | ABDOLHAMIDZADEH Bahman, ABBASI Tasneem, RASHTCHIAN D, et al. A new method for assessing Domino effect in chemical process industry[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 416-426. |
| [9] | KHAKZAD Nima, KHAN Faisal, AMYOTTE Paul, et al. Domino effect analysis using Bayesian networks[J]. Risk Analysis, 2013, 33(2): 292-306. |
| [10] | KHAKZAD Nima. Application of dynamic Bayesian network to risk analysis of Domino effects in chemical infrastructures[J]. Reliability Engineering & System Safety, 2015, 138: 263-272. |
| [11] | KHAKZAD Nima, LANDUCCI Gabriele, COZZANI Valerio, et al. Cost-effective fire protection of chemical plants against Domino effects[J]. Reliability Engineering & System Safety, 2018, 169: 412-421. |
| [12] | ZHOU Jianfeng, RENIERS Genserik. Dynamic analysis of fire induced Domino effects to optimize emergency response policies in the chemical and process industry[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: 104835. |
| [13] | LANDUCCI Gabriele, GUBINELLI Gianfilippo, ANTONIONI Giacomo, et al. The assessment of the damage probability of storage tanks in Domino events triggered by fire[J]. Accident Analysis & Prevention, 2009, 41(6): 1206-1215. |
| [14] | WU Zhuang, HOU Lei, WU Shouzhi, et al. The time-to-failure assessment of large crude oil storage tank exposed to pool fire[J]. Fire Safety Journal, 2020, 117: 103192. |
| [15] | YANG Jianfeng, ZHANG Bo, CHEN Liangchao, et al. Improved solid radiation model for thermal response in large crude oil tanks[J]. Energy, 2023, 284: 128572. |
| [16] | YANG Jiahao, ZHANG Mingguang, ZUO Yawen, et al. Improved models of failure time for atmospheric tanks under the coupling effect of multiple pool fires[J]. Journal of Loss Prevention in the Process Industries, 2023, 81: 104957. |
| [17] | AMIN Md Tanjin, SCARPONI Giordano Emrys, COZZANI Valerio, et al. Dynamic Domino effect assessment (D2EA) in tank farms using a machine learning-based approach[J]. Computers & Chemical Engineering, 2024, 181: 108556. |
| [18] | LI Qinggong, SONG Wenhua, ZHANG Miao, et al. Numerical simulation of liquefied propane gas storage tanks full-size pool fire based on FDS[J]. Applied Mechanics and Materials, 2013, 353/354/355/356: 2419-2423. |
| [19] | COZZANI Valerio, GUBINELLI Gianfilippo, SALZANO Ernesto. Escalation thresholds in the assessment of Domino accidental events[J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 1-21. |
| [20] | BERBEROVIC E. Investigation of free-surface flow associated with drop impact: Numerical simulations and theoretical modeling[D]. Darmstadt: Technical University of Darmstadt, 2010. |
| [21] | FAVERO J L, SECCHI A R, CARDOZO N S M, et al. Viscoelastic fluid analysis in internal and in free surface flows using the software OpenFOAM[J]. Computers & Chemical Engineering, 2010, 34(12): 1984-1993. |
| [22] | MEHDIZADEH A, SHERIF S A, LEAR W E. Numerical simulation of thermofluid characteristics of two-phase slug flow in microchannels[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3457-3465. |
| [23] | ZADEH Shobeir Aliasghar, RADESPIEL Rolf. Numerical study on bubble formation in a microchannel flow-focusing device using the VOF method[C]// ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, 2011. |
| [24] | RAEINI Ali Q, BLUNT Martin J, BIJELJIC Branko. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method[J]. Journal of Computational Physics, 2012, 231(17): 5653-5668. |
| [25] | ROOHI Ehsan, ZAHIRI Amir Pouyan, Mahmood PASSANDIDEH-FARD. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model[J]. Applied Mathematical Modelling, 2013, 37(9): 6469-6488. |
| [26] | KERPICCI Husnu, YAGCI Alper, ONBASIOGLU Seyhan U. Investigation of oil flow in a hermetic reciprocating compressor[J]. International Journal of Refrigeration, 2013, 36(1): 215-221. |
| [27] | KLOSTERMANN J, SCHAAKE K, SCHWARZE R. Numerical simulation of a single rising bubble by VOF with surface compression[J]. International Journal for Numerical Methods in Fluids, 2013, 71(8): 960-982. |
| [28] | TSUI Yeng-Yung, LIN Shiwen. A VOF-based conservative interpolation scheme for interface tracking (CISIT) of two-fluid flows[J]. Numerical Heat Transfer B: Fundamentals, 2013, 63(4): 263-283. |
| [1] | ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182. |
| [2] | YANG Junhui, YUAN Jun, ZHANG Jida, WANG Jinhai, QIAO Hongbin, CAI Zhenyi, MA Zhongcheng. Structural design and performance analysis of a new type of heat accumulator [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 282-294. |
| [3] | ZHAO Jingbin, WANG Yanfu, WANG Tao, MA Weikai, WANG Chen. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. |
| [4] | WANG Te, JIANG Li, TIAN Xiaolu, FANG Binren, QU Long, LI Mingtao. Research progress of lithium ion batteries safety materials [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3132-3142. |
| [5] | Guohua CHEN, Xinyu ZHANG, Zhihang ZHOU, Tao ZENG. Numerical simulation on thermal response of diesel dome tank under the impact of double-pool fire [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4342-4350. |
| [6] | Kongxing HUANG, Guohua CHEN, Tao ZENG, Kun HU. Review of quantitative risk assessment and pre-control system of Na-Tech event in Chemical Industry Park [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3482-3494. |
| [7] | Kun HU, Guohua CHEN, Zhihang ZHOU, Kongxing HUANG. Review of the vulnerability of chemical equipment subjected to blast wave [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1634-1645. |
| [8] | CHEN Guohua, QI Shuai, JIA Meisheng, HU Kun. Research on Domino effect accident caused by the fragments of chemical vessels in retrospect and prospect [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4308-4317. |
| [9] | JIA Meisheng, CHEN Guohua. Dynamic reliability of horizontal LPG tank exposed to fire [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3231-3236. |
| [10] | JIA Meisheng, CHEN Guohua. Stability and static reliability of horizontal LPG tank exposed to fire [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2353-2359. |
| [11] | JIA Meisheng, CHEN Guohua, HU Kun. Review of risk assessment and pre-control of Domino effect in Chemical Industry Park [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1534-1543. |
| [12] | XIA Chenxi, HAN Hui, LI Weimin. Domino effect analysis of dust explosions using Bayesian networks [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 110-115. |
| [13] | YIN Huibin,GAO Xuenong,DING Jing,ZHANG Zhengguo. Advances in application of thermal adaptation composite materials in electronic device cooling [J]. Chemical Industry and Engineering Progree, 2007, 26(6): 830-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |