Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7065-7074.DOI: 10.16085/j.issn.1000-6613.2024-1880
• Materials science and technology • Previous Articles
XU Mengmeng(
), HUANG Qiguang, ZHENG Tao(
), HUI Tianli, LIU Haiyan, ZHANG Rui, MENG Xianghai, LIU Zhichang(
)
Received:2024-11-15
Revised:2025-02-26
Online:2026-01-06
Published:2025-12-25
Contact:
ZHENG Tao, LIU Zhichang
徐猛猛(
), 黄启广, 郑涛(
), 回天力, 刘海燕, 张睿, 孟祥海, 刘植昌(
)
通讯作者:
郑涛,刘植昌
作者简介:徐猛猛(1992—),男,博士研究生,研究方向为离子液体、炭材料。E-mail:xm1324010205@sina.com。
CLC Number:
XU Mengmeng, HUANG Qiguang, ZHENG Tao, HUI Tianli, LIU Haiyan, ZHANG Rui, MENG Xianghai, LIU Zhichang. Preparation of naphthalene pitch through liquid-liquid extraction from chloroaluminate ionic liquids[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7065-7074.
徐猛猛, 黄启广, 郑涛, 回天力, 刘海燕, 张睿, 孟祥海, 刘植昌. 氯铝酸离子液体催化萘沥青的液液萃取制备[J]. 化工进展, 2025, 44(12): 7065-7074.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1880
| 项目 | 溶剂名称 | 溶解情况 | |
|---|---|---|---|
| 离子液体① | 萘沥青② | ||
| 1 | 吡啶 | 反应 | 溶解 |
| 2 | 喹啉 | 反应 | 溶解 |
| 3 | 二甲基甲酰胺 | 反应 | 溶解 |
| 4 | 三乙胺 | 反应 | 溶解 |
| 5 | N-甲基吡咯烷酮 | 反应 | 溶解 |
| 6 | 正辛烷 | 不溶 | 微溶 |
| 7 | 异辛烷 | 不溶 | 微溶 |
| 8 | 正庚烷 | 不溶 | 微溶 |
| 9 | 正戊烷 | 不溶 | 微溶 |
| 10 | 异戊烷 | 不溶 | 微溶 |
| 11 | 石油醚 | 不溶 | 微溶 |
| 12 | 十一烷 | 不溶 | 微溶 |
| 13 | 苯 | 微溶 | 易溶 |
| 14 | 甲苯 | 微溶 | 易溶 |
| 15 | 二甲苯 | 微溶 | 易溶 |
| 16 | 对二甲苯 | 微溶 | 易溶 |
| 项目 | 溶剂名称 | 溶解情况 | |
|---|---|---|---|
| 离子液体① | 萘沥青② | ||
| 1 | 吡啶 | 反应 | 溶解 |
| 2 | 喹啉 | 反应 | 溶解 |
| 3 | 二甲基甲酰胺 | 反应 | 溶解 |
| 4 | 三乙胺 | 反应 | 溶解 |
| 5 | N-甲基吡咯烷酮 | 反应 | 溶解 |
| 6 | 正辛烷 | 不溶 | 微溶 |
| 7 | 异辛烷 | 不溶 | 微溶 |
| 8 | 正庚烷 | 不溶 | 微溶 |
| 9 | 正戊烷 | 不溶 | 微溶 |
| 10 | 异戊烷 | 不溶 | 微溶 |
| 11 | 石油醚 | 不溶 | 微溶 |
| 12 | 十一烷 | 不溶 | 微溶 |
| 13 | 苯 | 微溶 | 易溶 |
| 14 | 甲苯 | 微溶 | 易溶 |
| 15 | 二甲苯 | 微溶 | 易溶 |
| 16 | 对二甲苯 | 微溶 | 易溶 |
| 萘沥青 | 收率①/% | TS②/% | 氢碳原子比 | 软化点③/℃ | 灰分含量④/% |
|---|---|---|---|---|---|
| NP-1 | 50% | 100 | 0.712 | 35 | 0.0020 |
| NP-2 | 35% | 100 | 0.708 | 30 | 0.0016 |
| 萘沥青 | 收率①/% | TS②/% | 氢碳原子比 | 软化点③/℃ | 灰分含量④/% |
|---|---|---|---|---|---|
| NP-1 | 50% | 100 | 0.712 | 35 | 0.0020 |
| NP-2 | 35% | 100 | 0.708 | 30 | 0.0016 |
| 中间相沥青 | 收率①/% | 溶解度②/% | 氢碳原子比 | 软化点③/℃ | 各向异性含量④/% | ||
|---|---|---|---|---|---|---|---|
| BS | BS-PS | PI | |||||
| MP-1 | 38 | 27 | 18 | 55 | 0.51 | 315 | 98 |
| MP-2 | 30 | 31 | 21 | 48 | 0.49 | 310 | 99 |
| 中间相沥青 | 收率①/% | 溶解度②/% | 氢碳原子比 | 软化点③/℃ | 各向异性含量④/% | ||
|---|---|---|---|---|---|---|---|
| BS | BS-PS | PI | |||||
| MP-1 | 38 | 27 | 18 | 55 | 0.51 | 315 | 98 |
| MP-2 | 30 | 31 | 21 | 48 | 0.49 | 310 | 99 |
| [1] | LIU Heguang, YANG Yujia, TIAN Na, et al. Foam-structured carbon materials and composites for electromagnetic interference shielding: Design principles and structural evolution[J]. Carbon, 2024, 217: 118608. |
| [2] | ZHANG Ningyuan, HUANG Dong, CHEN Xiang, et al. Improving the interlaminar bonding and thermal conductivity of polymer composites by using split-radial mesophase pitch-based carbon fiber as reinforcement[J]. Composites Part B: Engineering, 2023, 252: 110509. |
| [3] | ESWARAPPA PRAMEELA Suhas, POLLOCK Tresa M, RAABE Dierk, et al. Materials for extreme environments[J]. Nature Reviews Materials, 2022, 8(2): 81-88. |
| [4] | CHENG Youliang, YANG Lu, LUO Tao, et al. Preparation and characterization of mesophase pitch via co-carbonization of waste polyethylene/petroleum pitch[J]. Journal of Materials Science & Technology, 2015, 31(8): 857-863. |
| [5] | 马子辉, 杨桃, 宋燕, 等. 催化法制备中间相沥青的研究进展[J]. 新型炭材料(中英文), 2024, 39: 1-28. |
| MA Zihui, YANG Tao, SONG Yan, et al. A review of the catalytic preparation of mesophase pitch[J]. New Carbon Materials (Chinese & English), 2024, 39: 1-28. | |
| [6] | 高海港, 安高军, 鲁长波, 等. 可纺中间相沥青的研究进展[J]. 化工进展, 2024, 43(2): 1001-1012. |
| GAO Haigang, AN Gaojun, LU Changbo, et al. Research progress on spinnable mesophase pitch[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1001-1012. | |
| [7] | BROOKS J D, TAYLOR G H. The formation of graphitizing carbons from the liquid phase[J]. Carbon, 1965, 3(2): 185-193. |
| [8] | KORAI Yozo, YOON Seong-Ho, Hidetoshi OKA, et al. The properties of co-oligomerized mesophase pitch from methylnaphthalene and naphthalene catalyzed by HF/BF3 [J]. Carbon, 1998, 36(4): 369-375. |
| [9] | ZHANG Xingwei, MENG Yuchen, FAN Baolin, et al. Preparation of mesophase pitch from refined coal tar pitch using naphthalene-based mesophase pitch as nucleating agent[J]. Fuel, 2019, 243: 390-397. |
| [10] | THOMPSON Christina, FRANK George, EDWARDS Vivian, et al. Mesophase pitch-based high performance carbon fiber production using coal extracts from mild direct coal liquefaction[J]. Carbon, 2024, 226: 119212. |
| [11] | ZHANG Xingwei, MA Zhaokun, HE Yan, et al. Correlation between properties of coal-based mesophase pitch with sea-island texture prepared by hydrogenation and graphite fibers[J]. Carbon, 2024, 216: 118510. |
| [12] | ZHANG Zhichen, WANG Zenghao, ZHANG Lanjie, et al. Study on the co-carbonization behavior of high-temperature coal tar pitch and raffinate oil of low-temperature coal tar[J]. Fuel, 2022, 310: 122469. |
| [13] | QI Mengyao, HUANG Sheng, WU Shiyong, et al. Effective preparation of mesophase by segmented hydrogenation/thermal polycondensation of coal liquefied pitch[J]. Fuel, 2022, 324: 124685. |
| [14] | TOMARU Taisei, SHIMANOE Hiroki, HONG Seonghwa, et al. Preparation of spinnable mesophase pitch from pyrolyzed fuel oil by pressurized heat treatment and its application of carbon fiber[J]. Carbon, 2024, 226: 119160. |
| [15] | LIAO Gen, SHI Kui, YE Chong, et al. Influence of resin on the formation and development of mesophase in fluid catalytic cracking (FCC) slurry oil[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 105997. |
| [16] | CHEN Pengcheng, METZ Jordan N, MENNITO Anthony S, et al. Petroleum pitch: Exploring a 50-year structure puzzle with real-space molecular imaging[J]. Carbon, 2020, 161: 456-465. |
| [17] | CHEN Pengcheng, METZ Jordan N, GROSS Adam S, et al. Ex situ and in situ thermal transformations of M-50 pitch revealed by non-contact atomic force microscopy[J]. Energy & Fuels, 2021, 35(22): 18210-18219. |
| [18] | GUO Jianguang, ZHU Hui, XU Huitao, et al. Spinnable mesophase pitch prepared via co-carbonization of fluid catalytic cracking decant oil and synthetic naphthalene pitch[J]. Energy & Fuels, 2020, 34(2): 2566-2573. |
| [19] | GARGIULO Valentina, APICELLA Barbara, Michela ALFÈ, et al. Structural characterization of large polycyclic aromatic hydrocarbons. Part 1: The case of coal tar pitch and naphthalene-derived pitch[J]. Energy & Fuels, 2015, 29(9): 5714-5722. |
| [20] | MOCHIDA Isao, NAKAMURA Eiichi, MAEDA Keiko, et al. Carbonization of aromatic hydrocarbons—Ⅴ: Microscopic features of carbons obtained by the aid of catalysts[J]. Carbon, 1976, 14(6): 341-344. |
| [21] | MOCHIDA Isao, KUDO Keiko, FUKUDA Noriyoshi, et al. Carbonization of pitches—Ⅳ: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon, 1975, 13(2): 135-139. |
| [22] | 刘犇, 赵红超, 李香粉, 等. 中间相沥青脱除灰分[J]. 新型炭材料, 2016, 31(4): 455-458. |
| LIU Ben, ZHAO Hongchao, LI Xiangfen, et al. De-ashing of naphthalene-based mesophase pitch synthesized by the AlCl3-catalyzed method[J]. New Carbon Materials, 2016, 31(4): 455-458. | |
| [23] | MOCHIDA Isao, SHIMIZU Kiyoyuki, KORAI Yozo, et al. Structure and carbonization properties of pitches produced catalytically from aromatic hydrocarbons with HF BF3 [J]. Carbon, 1988, 26(6): 843-852. |
| [24] | MOCHIDA Isao, SHIMIZU Kiyoyuki, KORAI Yozo, et al. Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HF/BF3 [J]. Carbon, 1990, 28 (2/3): 311-319. |
| [25] | 张霞, 钟炳, 刘朗, 等. 固体超强酸SO4 2-/TiO2对萘齐聚反应的催化作用[J]. 燃料化学学报, 1997, 25(2): 71-74. |
| ZHANG Xia, ZHONG Bing, LIU Lang, et al. The catalytic effect of solid superacid SO4 2-/TiO2 on the naphthalene oligomerization reaction[J]. Journal of Fuel Chemistry and Technology, 1997, 25(2): 71-74. | |
| [26] | 胡子君, 吕春祥, 凌立成, 等. 经ZrO2/SO4 2-催化所得萘齐聚物的中间相转化行为[J]. 燃料化学学报, 1997, 25(6): 554-559. |
| HU Zijun, Chunxiang LYU, LING Licheng, et al. Studies on mesophase transformation behavior of naphthalene oligomers prepared using ZrO2/SO4 2- catalyst[J]. Journal of Fuel Chemistry and Technology, 1997, 25(6): 554-559. | |
| [27] | ZHANG Ruina, CUI Guokai, WANG Xiuqin, et al. Ionic liquid-based advanced porous organic hyper-crosslinked polymers (ILHCPs) for CO2 capture and conversion[J]. Chemical Engineering Journal, 2024, 489: 151102. |
| [28] | YU Gangqiang, DAI Chengna, LIU Ning, et al. Hydrocarbon extraction with ionic liquids[J]. Chemical Reviews, 2024, 124(6): 3331-3391. |
| [29] | BACA Kalin R, Karim AL-BARGHOUTI, WANG Ning, et al. Ionic liquids for the separation of fluorocarbon refrigerant mixtures[J]. Chemical Reviews, 2024, 124(9): 5167-5226. |
| [30] | SHAMSHIAN Julia L, ROGERS Robin D. Ionic liquids: New forms of active pharmaceutical ingredients with unique, tunable properties[J]. Chemical Reviews, 2023, 123(20): 11894-11953. |
| [31] | WEBER Cameron C, MASTERS Anthony F, MASCHMEYER Thomas. Structural features of ionic liquids: Consequences for material preparation and organic reactivity[J]. Green Chemistry, 2013, 15(10): 2655-2679. |
| [32] | GHOLINEJAD Mohammad, ZAREH Fatemeh, SHEIBANI Hassan, et al. Magnetic ionic liquids as catalysts in organic reactions[J]. Journal of Molecular Liquids, 2022, 367: 120395. |
| [33] | LIU Guangliang, WU Guoqing, LIU Ying, et al. Theoretical study on the C4 alkylation mechanism catalyzed by Cu-containing chloroaluminate ionic liquids[J]. Fuel, 2022, 310: 122379. |
| [34] | ELTERMAN V A, P Yu SHEVELIN, YOLSHINA L A, et al. Physicochemical characteristics of 1-ethyl- and 1-butyl-3-methylimidazolium chloroaluminate ionic liquids[J]. Journal of Molecular Liquids, 2022, 364: 120061. |
| [35] | ZHANG Bin, WANG Qi, ZHAN Haitao, et al. Gradient equivalent feeding in the acylation of 2,3-dihydrobenzofuran catalyzed by chloroaluminate ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(47): 15957-15962. |
| [36] | KORE Rajkumar, SAWANT Anand D, ROGERS Robin D. Recyclable magnetic Fe3O4 nanoparticle-supported chloroaluminate ionic liquids for heterogeneous Lewis acid catalysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(26): 8797-8802. |
| [37] | ELTERMAN V A, BOROZDIN A V, DRUZHININ K V, et al. Chloroaluminate ionic liquids for low-temperature aluminum-ion batteries[J]. Journal of Molecular Liquids, 2024, 394: 123702. |
| [38] | 刘海燕, 孙家宾, 徐猛猛, 等. 基于氯铝酸离子液体催化的萘低聚物的制备方法: CN113527024B[P]. 2022-10-04. |
| LIU Haiyan, SUN Jiabin, XU Mengmeng, et al. Preparation method of naphthalene oligomer based on chloroaluminate ionic liquid catalysis: CN113527024B[P]. 2022-10-04. | |
| [39] | WU Guang, WU Wei, XIAO Linfei, et al. Selective synthesis of 2,6-dimethylnaphthalene by transalkylation in the presence of acid ionic liquids [C n mim]Cl-AlCl3 [J]. Chemical Research in Chinese Universities, 2011, 27(6): 1010-1013. |
| [40] | LI Chenmin, QI Xin, Tang Xiangyan. Synthesis of 2-isopropyl naphthalene catalyzed by Et3NHCl-AlCl3 ionic liquids[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(1): 60-65. |
| [41] | LI Lei, ZHAO Xinrui, CHEN, et al. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect, 2019, 4(18): 5284-5290. |
| [42] | CHEN Chen, TANG Qiong, XU Hong, et al. Alkylation of naphthalene with n-butene catalyzed by liquid coordination complexes and its lubricating properties[J]. Chinese Journal of Chemical Engineering, 2021, 39: 306-313. |
| [43] | CUI Jingze, TANG Qiong, CHEN Chen, et al. High-viscosity polyalkylphenanthrene oils: Synthesis and evaluation of lubricating properties[J]. Lubrication Science, 2022, 34(8): 527-536. |
| [44] | RUSSO Carmela, STANZIONE Fernando, TREGROSSI Antonio, et al. Infrared spectroscopy of some carbon-based materials relevant in combustion: Qualitative and quantitative analysis of hydrogen[J]. Carbon, 2014, 74: 127-138. |
| [45] | 洪海球, 邓宋, 赖仕全, 等. 萘沥青及热转化产物的性质和结构表征[J]. 化工进展, 2020, 39(7): 2724-2733. |
| HONG Haiqiu, DENG Song, LAI Shiquan, et al. Properties and structural characterization of naphthalene pitch and its thermal conversion products[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2724-2733. |
| [1] | GUO Xuhao, YE Yiming, QI Xin, HU Shilin, ZHANG Pingzhu. Simulation of enrichment of 10B by cryogenic distillation of boron trifluoride [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 74-83. |
| [2] | ZOU Xianzhi, LIAO Yalong, YANG Shuangyu. Research progress on purification and impurity removal in copper electrolyte [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 492-503. |
| [3] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [4] | LIU Tong, QIAO Weijun, ZHAO Simeng, ZHAO Zhiping, TANG Qiong, LIU Lei, DONG Jinxiang. Synthesis of long-chain alkyl naphthalene base oil catalyzed by ionic liquids and its lubricating properties [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5277-5284. |
| [5] | HONG Kai, FAN Huan, TIAN Jia, ZHANG Xingfei. Treatment of copper-arsenic polymetallic acidic wastewater by sulfide precipitation: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5301-5314. |
| [6] | DU Xuan, WANG Zhanhong, ZHENG Bin, XU Wei, WANG Shuo, SHI Peng, GAO Guo. Progress on separation of cobalt-iron acid leaching solution and battery grade iron phosphate recovery technology [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5327-5338. |
| [7] | WANG Xiaoguang, DONG Qing, LANG Wenli, HONG Xiangxin, HUANG Zhenxiang, TAN Fengyu, LEI Yizhu, YU Ziyi. Progress on emission reduction and resource utilization of ultra-low concentration methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5363-5376. |
| [8] | FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017. |
| [9] | YANG Zhenglu, YANG Lifeng, LU Xiaofei, SUO Xian, ZHANG Anyun, CUI Xili, XING Huabin. Advances in machine learning accelerating the screening and discovery of porous adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4288-4301. |
| [10] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [11] | GAO Yan, LI Yongshuai, LI Gaoyang, PAN Hui, LING Hao. Dynamic control for Agrawal divided-wall column [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4594-4605. |
| [12] | WANG Guochao, DING Huidian, SHI Li, LI Qiang, XIA Tao, YUAN Yang. Temperature inferential control of compound distillation sequences [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4720-4731. |
| [13] | FU Yingxue, LEI Yang, CHEN Yuqiu, LIU Xinyan. Construction of UNIFAC model for ionic liquid-carbon dioxide binary system [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4862-4870. |
| [14] | TANG Xuan, BAI Xiaowei, ZHANG Feifei, LI Jinping, YANG Jiangfeng. Research progress on zeolite for CO2-N2-CH4 sieving separation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3938-3949. |
| [15] | CHEN Qian, TONG Kun, XIE Jiacai, SHAO Zhiguo, NIE Fan, LI Chentao. Research progress on the treatment technology of polymer-containing oil sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4158-4168. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |