| [1] |
CHEN Shuoshuo, FAN Shuguang, SONG Ningning, et al. Load-carrying capacity and tribomechanism of DDA/MADE modified MoO3 nanoparticle as an additive for alkylated naphthalene base oil[J]. Tribology International, 2024, 195(7): 109610.
|
| [2] |
YANG Tian, WANG Fajun, HUANG Jinpei, et al. Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system[J]. Reaction Chemistry & Engineering, 2021, 6(10): 1950-1960.
|
| [3] |
PEREGO Carlo, INGALLINA Patrizia. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes[J]. Catalysis Today, 2002, 73(1/2): 3-22.
|
| [4] |
刘键, 刘恒源, 谭斌, 等. 芳烃长链烷基化催化工艺研究进展[J]. 化工进展, 2020, 39(5): 1744-1755.
|
|
LIU Jian, LIU Hengyuan, TAN Bin, et al. Research progress in long chain catalytic alkylation of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1744-1755.
|
| [5] |
ZHANG Jie, HUANG Chongpin, CHEN Biaohua, et al. Isobutane/2-butene alkylation catalyzed by chloroaluminate ionic liquids in the presence of aromatic additives[J]. Journal of Catalysis, 2007, 249(2): 261-268.
|
| [6] |
WANG Mengke, KUAI Leiting, SHI Li, et al. Catalytic performance and industrial test of HY zeolite for alkylation of naphthalene and α-tetradecene[J]. New Journal of Chemistry, 2022, 46(5): 2290-2299.
|
| [7] |
KUAI Leiting, WANG Mengke, MENG Xuan, et al. W modified HY zeolite as catalyst for alkylation of aromatic[J]. Catalysis Letters, 2022, 152(8): 2480-2490.
|
| [8] |
ZHAO Zhongkui, QIAO Weihong, WANG Xiuna, et al. Effects of kinds of ionic liquid catalysts on alkylations of 1- and 2-methylnaphthalene with alkenes[J]. Applied Catalysis A: General, 2005, 290(1/2): 133-137.
|
| [9] |
LI Lei, ZHAO Xinrui, CHEN Chen, et al. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect, 2019, 4(18): 5284-5290.
|
| [10] |
李媛媛, 汤琼, 陈晨, 等. 离子液体催化多乙基萘基础油的合成及润滑性能研究[J]. 燃料化学学报(中英文), 2023, 51(5): 635-643.
|
|
LI Yuanyuan, TANG Qiong, CHEN Chen, et al. Synthesis of polyethylnaphthalenes base oil catalyzed by ionic liquid and its lubricating properties[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 635-643.
|
| [11] |
TANG Qiong, ZHAO Zhiping, HAN Jun, et al. Insight into the catalytic behavior of ionic liquids and deactivation suppression technique in naphthalene alkylation[J]. Chemical Engineering Science, 2024, 292: 119993.
|
| [12] |
QI Guopeng, JIANG Feng, SUN Xuewen, et al. Alkylation mechanism of benzene with 1-dodecene catalyzed by Et3NHCl-AlCl3 [J]. Science China Chemistry, 2010, 53(5): 1102-1107.
|
| [13] |
QIAO Kun, DENG Youquan. Alkylations of benzene in room temperature ionic liquids modified with HCl[J]. Journal of Molecular Catalysis A: Chemical, 2001, 171(1-2): 81-84.
|
| [14] |
宋上飞, 刘青才, 吕升阳. 三氟甲磺酸催化萘烷基化研究[J]. 石油炼制与化工, 2018, 49(5): 71-74.
|
|
SONG Shangfei, LIU Qingcai, Shengyang LYU. Alkylation of naphthalene catalyzed by trifluoromethanesulfonic acid[J]. Petroleum Processing and Petrochemicals, 2018, 49(5): 71-74.
|
| [15] |
NURMAKANOVA Asem, SALISCHEVA Anastasiya, CHUDINOVA Alyona, et al. Comparison between alkylation and transalkylation reactions using ab initio approach[J]. Procedia Chemistry, 2014, 10: 430-436.
|
| [16] |
LIU Yonghui, ZHOU Yuming, SHENG Xiaoli, et al. The catalytic performance study of chloroaluminate ionic liquids on long-chain alkenes alkylation[J]. Energy & Fuels, 2018, 32(9): 9763-9771.
|
| [17] |
HE Yibo, WAN Chao, ZHANG Qinghua, et al. Durability enhanced ionic liquid catalyst for Friedel-Crafts reaction between benzene and 1-dodecene: Insight into catalyst deactivation[J]. RSC Advances, 2015, 5(76): 62241-62247.
|
| [18] |
CAI Guangqing, LIU Zhefu, ZHANG Linzhou, et al. Quantitative structure-property relationship model for hydrocarbon liquid viscosity prediction[J]. Energy & Fuels, 2018, 32(3): 2190-3298.
|
| [19] |
ZHANG Wei, WU Jinquan, YU Senshen, et al. Modification and synthesis of low pour point plant-based lubricants with ionic liquid catalysis[J]. Renewable Energy, 2020, 153: 1320-1329.
|
| [20] |
BOWDEN Frank Philip, TABOR David. Mechanism of metallic friction[J]. Nature, 1942, 150: 197-199.
|
| [21] |
VELKAVRH Igor, KALIN Mitjan. Comparison of the effects of the lubricant-molecule chain length and the viscosity on the friction and wear of diamond-like-carbon coatings and steel[J]. Tribology International, 2012, 50: 57-65.
|
| [22] |
LI Haolin, MA Lin, WEN Ping, et al. Molecular structure insight into the tribological behavior of sulfonate ionic liquids as lubricants for titanium alloys[J]. Journal of Molecular Liquids, 2022, 357: 119082.
|
| [23] |
WANG Yanshuang, QIU Qingguo, ZHANG Pu, et al. Correlation between lubricating oil characteristic parameters and friction characteristics[J]. Coatings, 2023, 13(5): 881.
|
| [24] |
LU Renguo, MORIMOTO Masaya, TANI Hiroshi, et al. Tribological properties of alkyldiphenylethers in boundary lubrication[J]. Lubricants, 2019, 7(12): 112.
|
| [25] |
POLAJNAR Marko, Lucija ČOGA, KALIN Mitjan. Base lubricants for green stamping: The effects of their structure and viscosity on tribological performance[J]. Friction, 2023, 11(9): 1741-1754.
|