Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 6767-6778.DOI: 10.16085/j.issn.1000-6613.2024-1822
• Chemical processes and equipment • Previous Articles
DAI Guilong(
), HUANGFU Jiangfei(
), YANG Yijian, DENG Shukun, GONG Lingzhu
Received:2024-11-08
Revised:2024-11-24
Online:2026-01-06
Published:2025-12-25
Contact:
DAI Guilong
通讯作者:
戴贵龙
作者简介:戴贵龙(1983—),男,副教授,研究方向为太阳能高温热转换、辐射换热。E-mail:daiguilong611@126.com基金资助:CLC Number:
DAI Guilong, HUANGFU Jiangfei, YANG Yijian, DENG Shukun, GONG Lingzhu. Coupled heat transfer characteristics of the particle-packed receiver with gradient-absorbing design[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6767-6778.
戴贵龙, 皇甫江飞, 杨奕键, 邓树坤, 龚凌诸. 梯度吸热颗粒堆积床太阳能高温耦合传热特性[J]. 化工进展, 2025, 44(12): 6767-6778.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1822
| 粒径比D/d | 石英玻璃球层数 | 名称 |
|---|---|---|
| 3 | 0 | SB3 |
| 5 | 0 | SB5 |
| 7 | 0 | SB7 |
| 5 | 1 | G1B5 |
| 5 | 2 | G2B5 |
| 5 | 3 | G3B5 |
| 粒径比D/d | 石英玻璃球层数 | 名称 |
|---|---|---|
| 3 | 0 | SB3 |
| 5 | 0 | SB5 |
| 7 | 0 | SB7 |
| 5 | 1 | G1B5 |
| 5 | 2 | G2B5 |
| 5 | 3 | G3B5 |
| 小球 | cp /J·(kg∙K)-1 | ρs/kg·m-3 | ks/W·(m·K)-1 | |
|---|---|---|---|---|
| 玻璃小球 | 892 | 2200 | 1.5 | 1.0m-1(0.2~2.56μm),1.45; 1000m-1(其他波段),1.35 |
| 氮化硅小球 | 1100 | 3100 | 100 | —,0.85 |
| 小球 | cp /J·(kg∙K)-1 | ρs/kg·m-3 | ks/W·(m·K)-1 | |
|---|---|---|---|---|
| 玻璃小球 | 892 | 2200 | 1.5 | 1.0m-1(0.2~2.56μm),1.45; 1000m-1(其他波段),1.35 |
| 氮化硅小球 | 1100 | 3100 | 100 | —,0.85 |
| [1] | Pengfei LYU, LIU Lanlan, DONG Hongsheng, et al. Charging behavior of packed-bed thermal energy storage systems in medium and low temperature applications[J]. Applied Energy, 2024, 373: 123893. |
| [2] | WEI Yuanke, GAO Zhe, CHENG Zedong, et al. Comprehensive study on parabolic trough solar receiver-reactors via a novel efficient optical-thermal-chemical model of catalyst packed bed characteristics[J]. International Journal of Hydrogen Energy, 2024, 49: 877-891. |
| [3] | ZUO Hongyang, ZENG Kuo, ZHONG Dian, et al. Parameter analysis and optimization of multi-dimensional packed bed shrinkage model developed by phase field method for solar gasification of biomass[J]. Fuel, 2024, 367: 131174. |
| [4] | GAO Zhe, GAO Qianpeng, CHENG Zedong, et al. Dynamic study on the solar-driven methanol steam reforming process in novel heat-storage parabolic trough solar receiver-reactors[J]. Renewable Energy, 2024, 229: 120699. |
| [5] | WEI Yuanke, ZHANG Jundong, CHENG Zedong, et al. Numerical study on novel parabolic trough solar receiver-reactors with double-channel structure catalyst particle packed beds by developing actual three-dimensional catalyst porosity distributions[J]. Chemical Engineering Science, 2024, 287: 119693. |
| [6] | Clifford K HO. A review of high-temperature particle receivers for concentrating solar power[J]. Applied Thermal Engineering, 2016, 109: 958-969. |
| [7] | JIANG Kaijun, DU Xiaoze, KONG Yanqiang, et al. A comprehensive review on solid particle receivers of concentrated solar power[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109463. |
| [8] | ZHU Qibin, XUAN Yimin. Pore scale numerical simulation of heat transfer and flow in porous volumetric solar receivers[J]. Applied Thermal Engineering, 2017, 120: 150-159. |
| [9] | SEDIGHI Mohammadreza, TAYLOR Robert A, PADILLA Ricardo Vasquez. Experimentally validated pore-scale numerical analysis for high-temperature (>700℃), high-efficiency (>90%) volumetric solar receivers[J]. Energy Conversion and Management X, 2021, 12: 100127. |
| [10] | SEDIGHI Mohammadreza, MEYBODI Mehdi Aghaei, TAYLOR Robert A, et al. A scaled-up, CSP integrated, high-temperature volumetric receiver with a semi-transparent packed-bed absorber[J]. Energy Conversion and Management X, 2022, 16: 100328. |
| [11] | ZHANG Qiangqiang, CHANG Zheshao, FU Mingkai, et al. Performance analysis of a light uniform device for the solar receiver or reactor[J]. Energy, 2023, 270: 126940. |
| [12] | FLAMANT G, MENIGAULT T, SCHWANDER D. Combined heat transfer in a semitransparent multilayer packed bed[J]. Journal of Heat Transfer, 1988, 110(2): 463-467. |
| [13] | MENIGAULT Thierry, FLAMANT Gilles, RIVOIRE Bruno. Advanced high-temperature two-slab selective volumetric receiver[J]. Solar Energy Materials, 1991, 24(1/2/3/4): 192-203. |
| [14] | SEDIGHI Mohammadreza, PADILLA Ricardo Vasquez, ALAMDARI Pedram, et al. A novel high-temperature (>700℃), volumetric receiver with a packed bed of transparent and absorbing spheres[J]. Applied Energy, 2020, 264: 114705. |
| [15] | SEDIGHI Mohammadreza, VASQUEZ PADILLA Ricardo, TAYLOR Robert A. Efficiency limits of high-temperature transparent packed-bed solar receivers[J]. Energy Conversion and Management, 2021, 241: 114257. |
| [16] | ZHANG Minhua, DONG He, GENG Zhongfeng. Computational study of particle packing process and fluid flow inside Polydisperse cylindrical particles fixed beds[J]. Powder Technology, 2019, 354: 19-29. |
| [17] | GUO Zehua, SUN Zhongning, ZHANG Nan, et al. CFD analysis of fluid flow and particle-to-fluid heat transfer in packed bed with radial layered configuration[J]. Chemical Engineering Science, 2019, 197: 357-370. |
| [18] | WU Hao, GUI Nan, YANG Xingtuan, et al. Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation[J]. International Journal of Heat and Mass Transfer, 2017, 110: 393-405. |
| [19] | CHEN Jingjing, KUMAR Apurv, COVENTRY Joe, et al. Heat transfer in directly-irradiated high-temperature solid-gas flows laden with polydisperse particles[J]. Applied Mathematical Modelling, 2022, 110: 698-722. |
| [20] | ZHANG Kai, DU Shiqi, SUN Peng, et al. The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation[J]. Energy, 2021, 225: 120244. |
| [21] | 王秋旺. 节能与储能传递过程原理、技术与应用[J]. 中国科学: 技术科学, 2023, 53(10): 1763-1780. |
| WANG Qiuwang. Principles, technology, and application of transfer processes for energy saving and storage[J]. Scientia Sinica (Technologica), 2023, 53(10): 1763-1780. | |
| [22] | SANDU Vlad-Cristian, CORMOS Calin-Cristian, CORMOS Ana-Maria. CFD simulation of syngas chemical looping combustion with randomly packed ilmenite oxygen carrier particles[J]. Clean Technologies and Environmental Policy, 2024, 26(1): 129-147. |
| [23] | SANDU Vlad-Cristian, CORMOS Calin-Cristian, CORMOS Ana-Maria. Multiscale CFD modelling of syngas-based chemical looping combustion in a packed bed reactor with dynamic gas switching technology[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111381. |
| [24] | ZHAO Wanxia, SUN Zhiwei, ALWAHABI Zeyad T. Emissivity and absorption function measurements of Al2O3 and SiC particles at elevated temperature for the utilization in concentrated solar receivers[J]. Solar Energy, 2020, 207: 183-191. |
| [25] | ZHU Qibin, XUAN Yimin. Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics[J]. Energy, 2019, 172: 467-476. |
| [26] | 李楠, 史俊瑞, 罗宪民, 等. 基于孔隙尺度的填充床内热态流场数值研究[J]. 热能动力工程, 2020, 35(6): 177-182. |
| LI Nan, SHI Junrui, LUO Xianmin, et al. Pore-level numerical simulation of hot flow field in a packed bed[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(6): 177-182. | |
| [27] | DU Shen, HE Yaling. Investigation and optimization on spectrally selective absorption for enhanced thermal performance in porous volumetric solar receivers[J]. Solar Energy Materials and Solar Cells, 2024, 277: 113135. |
| [28] | YANG Jian, WU Jiangquan, ZHOU Lang, et al. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio[J]. Nuclear Engineering and Design, 2016, 300: 85-96. |
| [29] | CHEN Xue, Jinxin LYU, SUN Chuang, et al. Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies[J]. Energy, 2023, 278: 128006. |
| [30] | 丁子益, 李勋锋, 岳献芳. 高温颗粒床有效热导率特性数值研究[J]. 工程热物理学报, 2019, 40(10): 2359-2363. |
| DING Ziyi, LI Xunfeng, YUE Xianfang. Numerical study of effective thermal conductivity characteristics of packed bed at high temperature[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2359-2363. | |
| [31] | AVILA-MARIN A L, FERNANDEZ-RECHE J, MARTINEZ-TARIFA A. Modelling strategies for porous structures as solar receivers in central receiver systems: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 15-33. |
| [32] | CHEN Xue, XIA Xinlin, YAN Xuewei, et al. Heat transfer analysis of a volumetric solar receiver with composite porous structure[J]. Energy Conversion and Management, 2017, 136: 262-269. |
| [33] | 胡轶嵩, 姜葳, 罗发, 等. 高温氧化对304不锈钢红外发射率影响研究[J]. 西北工业大学学报, 2020, 38(1): 225-229. |
| HU Yisong, JIANG Wei, LUO Fa, et al. Effect of high temperature oxidation on infrared irradiation of stainless steel 304[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 225-229. | |
| [34] | SUTHERLAND William. LII. The viscosity of gases and molecular force[J]. Philosophical Magazine and Journal of Science, 1893, 36(223): 507-531. |
| [35] | ZHANG Shunde, SUN Chuang, SUN Fengxian, et al. Spectral properties of an UV fused silica within 0.8 to 5 µm at elevated temperatures[J]. Infrared Physics & Technology, 2017, 85: 293-299. |
| [36] | 陈波, 韦中华, 李镔, 等. 氮化硅陶瓷在四大领域的研究及应用进展[J]. 硅酸盐通报, 2022, 41(4): 1404-1415. |
| CHEN Bo, WEI Zhonghua, LI Bin, et al. Research and application progress of silicon nitride ceramics in four major fields[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1404-1415. | |
| [37] | SHIKH ANUAR Fadhilah, ASHTIANI ABDI Iman, ODABAEE Mostafa, et al. Experimental study of fluid flow behaviour and pressure drop in channels partially filled with metal foams[J]. Experimental Thermal and Fluid Science, 2018, 99: 117-128. |
| [1] | CUI Ruizhuo, LI Shuangxi, LI Fangjun, ZHANG Tianhao, JIA Xiangji. Friction wear and temperature deformation field analysis of mechanical seal for dry friction kettle with SiC-graphite matching pair [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 58-73. |
| [2] | XU Haitian, XU Yanying, ZHAI Ming. Boiling heat transfer simulation using lattice Boltzmann model with flow velocity boundary conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 84-91. |
| [3] | CHEN Jiaming, XU Jiawei, TIAN Xiujun. Impact analysis of carbon emissions and economic performance in combined heat and power units [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 92-101. |
| [4] | WU Gang, SHEN Zhenhua, JIAO Feng, HE Yongqing. Characterization of melting heat transfer properties of metal-foam composite phase change materials under non-uniform heat flow [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 388-399. |
| [5] | SUN Bin, DU Jianguo, WANG Lingbao, BU Xianbiao, GONG Yulie, LI Huashan. Optimization of working fluid for U-shaped well supercritical power generation system driven by hot dry rock [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4945-4953. |
| [6] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [7] | LI Haodong, SHEN Shengqiang, CHEN Liang. Numerical simulation on ammonia-hydrogen combustion exhaust heat utilization coupling ammonia cracking process for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4443-4453. |
| [8] | LIU Tingting, MENG Zicheng, MU Lijing, CHEN Xizhong, LIU Cenfan. Fast prediction of 3D physical fields in ethylene oxidation reactors based on graph convolutional neural networks [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4571-4581. |
| [9] | YANG Xinliu, LIU Qiang, CAO Qian, CUI Yueming, FANG Chaohe. Effect of reservoir seepage on heat transfer performance of a single-well downhole coaxial geothermal heat exchanger [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3860-3868. |
| [10] | LIU Jianhong, LIU Dong, SHANG Fumin, YANG Kai, ZHENG Chaofan, CAO Xin. Heat transfer performance analysis of pulsating heat pipe heat exchanger with asymmetric structure [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3727-3736. |
| [11] | CAO Shuang, LIU He, GUO Jiaju, HU Chunxia, YANG Wolong, WU Xuehong. R245fa flow boiling heat transfer characteristics in enhanced tube with gradient porous coating [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3794-3803. |
| [12] | ZHANG Chunhua, WANG Guoqing, ZHANG Lijun, LU Bona, ZHOU Cong, LIU Junjie. Twisted-tape-based heat transfer enhancement technology: Advances and challenges in vortex structure regulation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3163-3174. |
| [13] | DAI Guilong, LIU Yishuo, MU Longkun, GONG Lingchu. Optimization on coupled heat transfer model performance of cavity-shaped porous solar receivers [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3258-3270. |
| [14] | MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937. |
| [15] | MENG Fanzhi, SUN Bing, YANG Zhe. Impact and risk assessment of feedstock substitution on new process safety in chemical production [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2955-2971. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |