Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7045-7056.DOI: 10.16085/j.issn.1000-6613.2024-1788

• Materials science and technology • Previous Articles    

Synergic influence of magnetic field and material on dynamic growth of calcium carbonate crystals

JIANG Huayi1(), GUO Zhijie1, LIANG Aiguo2, LIU Dongdong2, JU Yiyi3, ZHU Qiubo2, YU Qian2   

  1. 1.College of Pipeline Engineering, Xi’an Shiyou University, Xi’an 710065, Shaanxi, China
    2.Karamay Hongshan Oilfield Co. , Ltd. , Karamay 834000, Xinjiang, China
    3.Karamay Fucheng Energy Group Co. , Ltd. , Karamay 834000, Xinjiang, China
  • Received:2024-11-04 Revised:2025-02-19 Online:2026-01-06 Published:2025-12-25
  • Contact: JIANG Huayi

磁场与材料协同对碳酸钙晶体动态生长的影响

蒋华义1(), 郭智杰1, 梁爱国2, 刘冬冬2, 巨怡怡3, 朱秋波2, 于倩2   

  1. 1.西安石油大学管道工程学院,陕西 西安 710065
    2.克拉玛依红山油田有限责任公司,新疆 克拉玛依 834000
    3.克拉玛依市富城油砂矿资源开发有限责任公司,新疆 克拉玛依 834000
  • 通讯作者: 蒋华义
  • 作者简介:蒋华义(1973—),男,博士,教授,研究方向为油气储运工程。E-mail:hyjiang@xsyu.edu.cn
  • 基金资助:
    陕西省自然科学基金面上项目(2024JC-YBMS-401);克拉玛依红山油田有限责任公司“2024年红003井区地面集输系统水质硬度调节装置研究与应用项目”(S-2024-JS-007)

Abstract:

To address the issue of calcium carbonate (CaCO3) scaling leading to pipeline blockages, this study proposed the approach of "transforming passive scaling into active localized scaling and descaling". Focusing on the produced water from an oilfield, dynamic shear experiments, along with scanning electron microscopy, contact angle measurements, surface energy, and roughness tests, were conducted to investigate the synergistic effects of magnetic fields and materials on the dynamic growth of calcium carbonate crystals. The results indicated that the material effects on calcium removal rate and calcium carbonate scaling were consistent regardless of the presence of a magnetic field. In the absence of a magnetic field, the order of calcium removal rate and scaling amount was as follows: polytetrafluoroethylene (PTFE) > fiberglass > galvanized iron > 316 stainless steel > H62 brass > PVC. When a magnetic field was applied, the calcium removal rate followed this order: PTFE > fiberglass > galvanized iron > 316 stainless steel > H62 brass > PVC, while the scaling amount follows: PTFE > galvanized iron > fiberglass > 316 stainless steel > H62 brass > PVC. The coupling effect of the magnetic field and materials resulted in a reduction in scaling amounts, an increase in calcium removal rates, and a decrease in nucleation induction periods for calcium carbonate. This can be attributed to the fact that under the influence of the magnetic field, the contact angle and roughness of the material surface decreased, while surface energy increased, promoting the formation of aragonite-type scale. Among the materials tested, PTFE exhibited the strongest interaction with the magnetic field. When the magnetic field strength reaches 4000Gs and the scaling material was PTFE, the scaling amount and calcium removal rate attained their highest values of 4.84g/m2 and 52%, respectively. The induction period was reduced from 8 minutes to 2 minutes, and after 50 minutes, the scaling amount was reduced by 29%, while the calcium removal rate was increased by 12%. Moreover, with prolonged exposure time, the contact angle of the material surface gradually decreased, while surface energy and roughness increased, facilitating further attachment of scale on the material surface.

Key words: synergistic effect, magnetic field, physical properties of materials, calcium carbonate, crystal, dynamic growth

摘要:

为解决CaCO3结垢造成管线堵塞问题。基于“变被动结垢为主动定点结垢除垢”的思路,本文针对某油田采出水,综合动态剪切实验以及扫描电子显微镜、接触角、表面自由能和粗糙度测试,研究磁场与材料协同作用规律以及对碳酸钙晶体动态生长的影响机理。结果表明,有/无磁场作用下各材料对失钙率和碳酸钙结垢量的影响规律性一致。无磁场作用下,失钙率和结垢量排序为聚四氟乙烯(PTFE)>玻璃钢>镀锌铁>316不锈钢>H62黄铜>PVC;磁场作用下,失钙率排序为PTFE>玻璃钢>镀锌铁>316不锈钢>H62铜>PVC,结垢量排序为PTFE>镀锌铁>玻璃钢>316不锈钢>H62铜>PVC。磁场与材料耦合作用使结垢量降低、失钙率升高以及碳酸钙成核诱导期缩短。造成这种作用的原因是磁场作用下,材料表面接触角与粗糙度降低,表面自由能增大,促进文石型CaCO3垢物形成。磁场作用下PTFE材料与磁场耦合作用最强,当磁场强度为4000Gs,结垢材料为PTFE时,结垢量和失钙率达到最高值分别为4.84g/m2和52%,诱导期由8min缩短到2min。在50min时,结垢量降低29%,失钙率升高12%。此外,随着时间延长,材料表面接触角逐渐减小,表面自由能和表面粗糙度逐渐增大,有利于污垢在材料表面继续附着。

关键词: 协同效应, 磁场, 材料物性, 碳酸钙, 晶体, 动态生长

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd