Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7045-7056.DOI: 10.16085/j.issn.1000-6613.2024-1788
• Materials science and technology • Previous Articles
JIANG Huayi1(
), GUO Zhijie1, LIANG Aiguo2, LIU Dongdong2, JU Yiyi3, ZHU Qiubo2, YU Qian2
Received:2024-11-04
Revised:2025-02-19
Online:2026-01-06
Published:2025-12-25
Contact:
JIANG Huayi
蒋华义1(
), 郭智杰1, 梁爱国2, 刘冬冬2, 巨怡怡3, 朱秋波2, 于倩2
通讯作者:
蒋华义
作者简介:蒋华义(1973—),男,博士,教授,研究方向为油气储运工程。E-mail:hyjiang@xsyu.edu.cn。
基金资助:CLC Number:
JIANG Huayi, GUO Zhijie, LIANG Aiguo, LIU Dongdong, JU Yiyi, ZHU Qiubo, YU Qian. Synergic influence of magnetic field and material on dynamic growth of calcium carbonate crystals[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7045-7056.
蒋华义, 郭智杰, 梁爱国, 刘冬冬, 巨怡怡, 朱秋波, 于倩. 磁场与材料协同对碳酸钙晶体动态生长的影响[J]. 化工进展, 2025, 44(12): 7045-7056.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1788
| 组分类型 | 组分名称 | 浓度/mg·kg-1 |
|---|---|---|
| 阳离子 | Ca2+ | 196.24 |
| Mg2+ | 27.51 | |
| Na+ | 3493.38 | |
| K+ | 1.26 | |
| 阴离子 | Cl- | 5215.65 |
| 1021.64 | ||
| 0.74 | ||
| 3.31 |
| 组分类型 | 组分名称 | 浓度/mg·kg-1 |
|---|---|---|
| 阳离子 | Ca2+ | 196.24 |
| Mg2+ | 27.51 | |
| Na+ | 3493.38 | |
| K+ | 1.26 | |
| 阴离子 | Cl- | 5215.65 |
| 1021.64 | ||
| 0.74 | ||
| 3.31 |
| 标准液 | 表面张力/mN·m-1 | ||
|---|---|---|---|
| 蒸馏水 | 72.8 | 21.8 | 51 |
| 二碘甲烷 | 50.8 | 48.5 | 2.3 |
| 标准液 | 表面张力/mN·m-1 | ||
|---|---|---|---|
| 蒸馏水 | 72.8 | 21.8 | 51 |
| 二碘甲烷 | 50.8 | 48.5 | 2.3 |
| 材料类型 | 标准液体 | 接触角/(°) | |||||
|---|---|---|---|---|---|---|---|
| 0min | 10min | 20min | 30min | 40min | 50min | ||
| 玻璃钢 | 蒸馏水 | 70.19 | 69.87 | 68.15 | 67.58 | 67.25 | 66.86 |
| 二碘甲烷 | 45.37 | 44.26 | 43.78 | 43.19 | 42.58 | 42.10 | |
| 玻璃钢+磁场 | 蒸馏水 | 70.19 | 69.13 | 67.85 | 67.1 | 66.76 | 66.20 |
| 二碘甲烷 | 45.37 | 43.9 | 43.20 | 42.83 | 42.30 | 41.78 | |
| PTEF | 蒸馏水 | 98.57 | 97.85 | 97.10 | 96.89 | 96.23 | 95.78 |
| 二碘甲烷 | 68.20 | 67.50 | 66.18 | 65.30 | 64.90 | 64.00 | |
| PTEF+磁场 | 蒸馏水 | 98.57 | 97.26 | 96.87 | 95.69 | 96.17 | 95.19 |
| 二碘甲烷 | 68.20 | 67.19 | 65.87 | 65.10 | 64.58 | 63.57 | |
| PVC | 蒸馏水 | 78.95 | 78.56 | 78.15 | 77.87 | 77.56 | 77.31 |
| 二碘甲烷 | 76.25 | 75.21 | 75.16 | 74.89 | 73.29 | 72.89 | |
| PVC+磁场 | 蒸馏水 | 78.95 | 78.39 | 77.59 | 77.20 | 76.95 | 76.10 |
| 二碘甲烷 | 76.25 | 75.10 | 74.89 | 74.27 | 73.10 | 72.56 | |
| 镀锌铁 | 蒸馏水 | 81.13 | 80.76 | 80.19 | 78.75 | 78.12 | 77.87 |
| 二碘甲烷 | 42.13 | 41.56 | 40.85 | 40.28 | 39.89 | 39.20 | |
| 镀锌铁+磁场 | 蒸馏水 | 81.13 | 79.85 | 79.15 | 78.59 | 77.20 | 76.16 |
| 二碘甲烷 | 42.13 | 41.20 | 39.28 | 38.50 | 38.20 | 37.10 | |
| H62铜 | 蒸馏水 | 85.79 | 84.10 | 82.38 | 81.59 | 80.12 | 79.72 |
| H62铜+磁场 | 二碘甲烷 | 43.22 | 42.90 | 42.95 | 42.42 | 42.10 | 41.76 |
| 蒸馏水 | 85.79 | 83.90 | 81.51 | 79.20 | 77.76 | 76.20 | |
| 316不锈钢 | 蒸馏水 | 80.79 | 80.27 | 79.56 | 79.20 | 78.56 | 78.10 |
| 二碘甲烷 | 43.25 | 42.98 | 42.30 | 41.89 | 41.20 | 40.56 | |
| 316不锈钢+磁场 | 蒸馏水 | 80.79 | 78.39 | 78.10 | 77.50 | 77.20 | 76.58 |
| 二碘甲烷 | 43.25 | 41.28 | 39.89 | 39.50 | 39.10 | 38.56 | |
| 材料类型 | 标准液体 | 接触角/(°) | |||||
|---|---|---|---|---|---|---|---|
| 0min | 10min | 20min | 30min | 40min | 50min | ||
| 玻璃钢 | 蒸馏水 | 70.19 | 69.87 | 68.15 | 67.58 | 67.25 | 66.86 |
| 二碘甲烷 | 45.37 | 44.26 | 43.78 | 43.19 | 42.58 | 42.10 | |
| 玻璃钢+磁场 | 蒸馏水 | 70.19 | 69.13 | 67.85 | 67.1 | 66.76 | 66.20 |
| 二碘甲烷 | 45.37 | 43.9 | 43.20 | 42.83 | 42.30 | 41.78 | |
| PTEF | 蒸馏水 | 98.57 | 97.85 | 97.10 | 96.89 | 96.23 | 95.78 |
| 二碘甲烷 | 68.20 | 67.50 | 66.18 | 65.30 | 64.90 | 64.00 | |
| PTEF+磁场 | 蒸馏水 | 98.57 | 97.26 | 96.87 | 95.69 | 96.17 | 95.19 |
| 二碘甲烷 | 68.20 | 67.19 | 65.87 | 65.10 | 64.58 | 63.57 | |
| PVC | 蒸馏水 | 78.95 | 78.56 | 78.15 | 77.87 | 77.56 | 77.31 |
| 二碘甲烷 | 76.25 | 75.21 | 75.16 | 74.89 | 73.29 | 72.89 | |
| PVC+磁场 | 蒸馏水 | 78.95 | 78.39 | 77.59 | 77.20 | 76.95 | 76.10 |
| 二碘甲烷 | 76.25 | 75.10 | 74.89 | 74.27 | 73.10 | 72.56 | |
| 镀锌铁 | 蒸馏水 | 81.13 | 80.76 | 80.19 | 78.75 | 78.12 | 77.87 |
| 二碘甲烷 | 42.13 | 41.56 | 40.85 | 40.28 | 39.89 | 39.20 | |
| 镀锌铁+磁场 | 蒸馏水 | 81.13 | 79.85 | 79.15 | 78.59 | 77.20 | 76.16 |
| 二碘甲烷 | 42.13 | 41.20 | 39.28 | 38.50 | 38.20 | 37.10 | |
| H62铜 | 蒸馏水 | 85.79 | 84.10 | 82.38 | 81.59 | 80.12 | 79.72 |
| H62铜+磁场 | 二碘甲烷 | 43.22 | 42.90 | 42.95 | 42.42 | 42.10 | 41.76 |
| 蒸馏水 | 85.79 | 83.90 | 81.51 | 79.20 | 77.76 | 76.20 | |
| 316不锈钢 | 蒸馏水 | 80.79 | 80.27 | 79.56 | 79.20 | 78.56 | 78.10 |
| 二碘甲烷 | 43.25 | 42.98 | 42.30 | 41.89 | 41.20 | 40.56 | |
| 316不锈钢+磁场 | 蒸馏水 | 80.79 | 78.39 | 78.10 | 77.50 | 77.20 | 76.58 |
| 二碘甲烷 | 43.25 | 41.28 | 39.89 | 39.50 | 39.10 | 38.56 | |
| 材料类型 | 表面能参数 | 表面能/mN·m-1 | |||||
|---|---|---|---|---|---|---|---|
| 0min | 10min | 20min | 30min | 40min | 50min | ||
| 玻璃钢 | 30.33 | 30.90 | 30.77 | 30.97 | 31.24 | 31.42 | |
| 10.39 | 10.35 | 11.34 | 11.58 | 11.65 | 11.80 | ||
| 玻璃钢+磁场 | 30.33 | 30.93 | 31.03 | 31.07 | 31.28 | 31.44 | |
| 10.39 | 10.74 | 11.40 | 11.81 | 11.91 | 12.16 | ||
| PTEF | 22.38 | 22.68 | 23.39 | 23.92 | 24.04 | 24.53 | |
| 1.55 | 1.66 | 1.70 | 1.66 | 1.79 | 1.81 | ||
| PTEF+磁场 | 22.38 | 22.76 | 23.54 | 23.79 | 24.24 | 24.69 | |
| PTEF+磁场 | 1.55 | 1.78 | 1.73 | 1.97 | 1.77 | 1.93 | |
| PVC | 13.85 | 14.34 | 14.30 | 14.40 | 15.23 | 15.41 | |
| 13.26 | 13.19 | 13.48 | 13.59 | 13.28 | 13.32 | ||
| PVC+磁场 | 13.85 | 14.38 | 14.36 | 14.63 | 15.23 | 15.38 | |
| 13.26 | 13.28 | 13.80 | 13.88 | 13.66 | 14.12 | ||
| 镀锌铁 | 34.96 | 35.20 | 35.46 | 35.41 | 35.46 | 35.79 | |
| 4.07 | 4.15 | 4.29 | 4.84 | 5.08 | 5.09 | ||
| 镀锌铁+磁场 | 34.96 | 35.17 | 36.08 | 36.37 | 36.17 | 36.49 | |
| 4.07 | 4.49 | 4.53 | 4.68 | 5.26 | 5.60 | ||
| H62铜 | 35.55 | 35.29 | 34.81 | 34.91 | 34.71 | 34.81 | |
| 2.47 | 3.02 | 3.67 | 3.92 | 4.49 | 4.62 | ||
| H62铜+磁场 | 35.55 | 35.61 | 35.09 | 35.18 | 35.72 | 35.58 | |
| 2.47 | 3.02 | 3.91 | 4.73 | 5.15 | 5.82 | ||
| 316不锈钢 | 34.21 | 34.23 | 34.45 | 34.60 | 34.83 | 35.08 | |
| 4.36 | 4.55 | 4.77 | 4.87 | 5.06 | 5.18 | ||
| 316不锈+磁场 | 34.21 | 34.74 | 35.46 | 35.52 | 35.67 | 35.80 | |
| 4.36 | 5.15 | 5.08 | 5.31 | 5.39 | 5.61 | ||
| 材料类型 | 表面能参数 | 表面能/mN·m-1 | |||||
|---|---|---|---|---|---|---|---|
| 0min | 10min | 20min | 30min | 40min | 50min | ||
| 玻璃钢 | 30.33 | 30.90 | 30.77 | 30.97 | 31.24 | 31.42 | |
| 10.39 | 10.35 | 11.34 | 11.58 | 11.65 | 11.80 | ||
| 玻璃钢+磁场 | 30.33 | 30.93 | 31.03 | 31.07 | 31.28 | 31.44 | |
| 10.39 | 10.74 | 11.40 | 11.81 | 11.91 | 12.16 | ||
| PTEF | 22.38 | 22.68 | 23.39 | 23.92 | 24.04 | 24.53 | |
| 1.55 | 1.66 | 1.70 | 1.66 | 1.79 | 1.81 | ||
| PTEF+磁场 | 22.38 | 22.76 | 23.54 | 23.79 | 24.24 | 24.69 | |
| PTEF+磁场 | 1.55 | 1.78 | 1.73 | 1.97 | 1.77 | 1.93 | |
| PVC | 13.85 | 14.34 | 14.30 | 14.40 | 15.23 | 15.41 | |
| 13.26 | 13.19 | 13.48 | 13.59 | 13.28 | 13.32 | ||
| PVC+磁场 | 13.85 | 14.38 | 14.36 | 14.63 | 15.23 | 15.38 | |
| 13.26 | 13.28 | 13.80 | 13.88 | 13.66 | 14.12 | ||
| 镀锌铁 | 34.96 | 35.20 | 35.46 | 35.41 | 35.46 | 35.79 | |
| 4.07 | 4.15 | 4.29 | 4.84 | 5.08 | 5.09 | ||
| 镀锌铁+磁场 | 34.96 | 35.17 | 36.08 | 36.37 | 36.17 | 36.49 | |
| 4.07 | 4.49 | 4.53 | 4.68 | 5.26 | 5.60 | ||
| H62铜 | 35.55 | 35.29 | 34.81 | 34.91 | 34.71 | 34.81 | |
| 2.47 | 3.02 | 3.67 | 3.92 | 4.49 | 4.62 | ||
| H62铜+磁场 | 35.55 | 35.61 | 35.09 | 35.18 | 35.72 | 35.58 | |
| 2.47 | 3.02 | 3.91 | 4.73 | 5.15 | 5.82 | ||
| 316不锈钢 | 34.21 | 34.23 | 34.45 | 34.60 | 34.83 | 35.08 | |
| 4.36 | 4.55 | 4.77 | 4.87 | 5.06 | 5.18 | ||
| 316不锈+磁场 | 34.21 | 34.74 | 35.46 | 35.52 | 35.67 | 35.80 | |
| 4.36 | 5.15 | 5.08 | 5.31 | 5.39 | 5.61 | ||
| [1] | 赵中华, 邢晓凯, 周恒, 等. 表面特性对污垢结垢行为影响研究综述[J]. 石油化工高等学校学报, 2018, 31(2): 89-95. |
| ZHAO Zhonghua, XING Xiaokai, ZHOU Heng, et al. Review on the effect of surface characteristics on fouling behavior[J]. Journal of Petrochemical Universities, 2018, 31(2): 89-95. | |
| [2] | 马云, 叶从丹, 李永军, 等. 吴定区块多层系开发采出液集输系统的堵塞机理[J]. 西安石油大学学报(自然科学版), 2019, 34(3): 35-40. |
| MA Yun, YE Congdan, LI Yongjun, et al. Study on blockage mechanism of produced liquid gathering and transportation system in Wuding multi-layer development block[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(3): 35-40. | |
| [3] | 李善建, 何浩轩, 王泽坤, 等. 气井井筒堵塞原因分析及解堵工艺研究进展[J]. 西安石油大学学报(自然科学版), 2024, 39(1): 56-65. |
| LI Shanjian, HE Haoxuan, WANG Zekun, et al. Analysis of reasons for wellbore blockage in gas wells and research progress in blockage removal technology[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2024, 39(1): 56-65. | |
| [4] | FINLAY John A, CALLOW Maureen E, ISTA Linnea K, et al. The influence of surface wettability on the adhesion strength of settled spores of the green alga enteromorpha and the diatom Amphora[J]. Integrative and Comparative Biology, 2002, 42(6): 1116-1122. |
| [5] | WANG Ye, HANSEN Christopher J, WU Chi-Chin, et al. Effect of surface wettability on the interfacial adhesion of a thermosetting elastomer on glass[J]. RSC Advances, 2021, 11(49): 31142-31151. |
| [6] | JIN Hong-Qing, ATHREYA Hrushikesha, WANG Sophie, et al. Experimental study of crystallization fouling by calcium carbonate: Effects of surface structure and material[J]. Desalination, 2022, 532: 115754. |
| [7] | Sandy SÁNCHEZ, PFEIFER Lukas, VLACHOPOULOS Nikolaos, et al. Rapid hybrid perovskite film crystallization from solution[J]. Chemical Society Reviews, 2021, 50(12): 7108-7131. |
| [8] | BERCE Jure, Matevž ZUPANČIČ, Matic MOŽE, et al. A review of crystallization fouling in heat exchangers[J]. Processes, 2021, 9(8): 1356. |
| [9] | GROSFILS Patrick, LUTSKO James F. Impact of surface roughness on crystal nucleation[J]. Crystals, 2021, 11(1): 4. |
| [10] | WANG Tong, CHEN Shougang, FENG Huimeng, et al. Modification strategy of siloxane antifouling coating: Adhesion strength, static antifouling, and self-healing properties[J]. Surface Science and Technology, 2023, 1(1): 28. |
| [11] | JIANG Huayi, SUN Nana, JU Yiyi, et al. Study on the effect of surface properties of non-metallic materials on the growth mechanism of crystallization fouling[J]. Processes, 2023, 11(8): 2232. |
| [12] | GAO Qiusheng, DUAN Liang, JIA Yanyan, et al. A comprehensive analysis of the impact of inorganic matter on membrane organic fouling: A mini review[J]. Membranes, 2023, 13(10): 837. |
| [13] | POTTICARY Jason, TERRY Lui R, BELL Christopher, et al. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth[J]. Nature Communications, 2016, 7: 11555. |
| [14] | WU Zeyu, CHEN Pengpeng, BIAN Huixi, et al. Application of magnetic field to accelerate the crystallization of scopolamine hydrobromide[J]. Separations, 2023, 10(9): 504. |
| [15] | SOHAILI Johan, SHI Hon Siau, LAVANIA-BALOO, et al. Removal of scale deposition on pipe walls by using magnetic field treatment and the effects of magnetic strength[J]. Journal of Cleaner Production, 2016, 139: 1393-1399. |
| [16] | ALABI Adetunji, CHIESA Matteo, GARLISI Corrado, et al. Advances in anti-scale magnetic water treatment[J]. Environmental Science: Water Research & Technology, 2015, 1(4): 408-425. |
| [17] | 韩勇. 缠绕式电脉冲水处理系统阻垢效能优化关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
| HAN Yong. Study on key technologies of scale inhibition efficiency optimization of wound electric pulse water treatment system[D]. Harbin: Harbin Institute of Technology, 2013. | |
| [18] | AMER Lydia, OUHENIA Salim, CHATEIGNER Daniel, et al. The effect of a magnetic field on the precipitation of calcium carbonate[J]. Applied Physics A, 2021, 127(9): 716. |
| [19] | LIU Zeyuan, DI LUCCIO Marco, Sergio GARCÍA, et al. Effect of magnetic field on calcium-silica fouling and interactions in brackish water distribution systems[J]. Science of the Total Environment, 2021, 798: 148900. |
| [20] | HOU Zhongwei, LIU Qiang, SUN Yongwei, et al. Influence of electromagnetic field on crystallization of tunnel drainage pipes[J]. Journal of Applied Science and Engineering, 2022, 26(4): 517-527. |
| [21] | WANG Gong, ZOU Shunyu, ZHENG Wei, et al. Optimum frequency model research and experimental verification for suppressing CaCO3 scaling in copper tubes by an electromagnetic field[J]. International Communications in Heat and Mass Transfer, 2022, 138: 106358. |
| [22] | ZHANG Yilong, TIAN Hongliang, LIANG Yandong, et al. Experimental study of fouling characteristics of CaCO3 precipitated crystal scale mixed with different particles in an alternating magnetic field environment[J]. International Journal of Thermal Sciences, 2024, 203: 109102. |
| [23] | 陈小砖, 李栋, 赵嫚, 等. 磁场、超声场、高压静电场抑垢阻垢研究进展[J]. 工业水处理, 2025, 45(3): 22-33. |
| CHEN Xiaozhuan, LI Dong, ZHAO man, et al. Progress in the research of scale inhibition and anti-scaling in magnetic fields, ultrasonic fields, and high voltage electrostatic fields [J]. Industrial Water Treatment, 2025, 45(3): 22-33. | |
| [24] | ALIMI F, TLILI M M, AMOR M BEN, et al. Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(8): 1327-1332. |
| [25] | 唐瑞. 基于扫频电磁场的管道内壁阻垢特性研究[D]. 常州: 常州大学, 2021. |
| TANG Rui. Study on scale inhibition characteristics of pipeline inner wall based on swept electromagnetic field[D]. Changzhou: Changzhou University, 2021. | |
| [26] | 蒋华义, 蔡航航, 梁爱国, 等. 碱对镀锌铁表面CaCO3污垢生长特性的影响机理研究[J]. 化工学报, 2019, 70(1): 170-178. |
| JIANG Huayi, CAI Hanghang, LIANG Aiguo, et al. Effect of alkali about growth characteristics of CaCO3 on galvanized iron surface[J]. CIESC Journal, 2019, 70(1): 170-178. | |
| [27] | 蒋华义, 张定周, 梁爱国, 等. 材料类型对CaCO3析晶污垢生长特性的影响机理研究[J]. 表面技术, 2018, 47(12): 255-262. |
| JIANG Huayi, ZHANG Dingzhou, LIANG Aiguo, et al. Effect mechanism of material type on crystallization growth of CaCO3-based scale[J]. Surface Technology, 2018, 47(12): 255-262. | |
| [28] | Kock-Yee LAW, ZHAO Hong. Determination of solid surface tension by contact angle[M]//Surface wetting. Cham: Springer International Publishing, 2015: 135-148. |
| [29] | 谭帼馨, 王航, 宁成云, 等. OTS修饰活性钛表面及电化学沉积钙磷涂层的研究[J]. 稀有金属材料与工程, 2015, 44(6): 1379-1384. |
| TAN Guoxin, WANG Hang, NING Chengyun, et al. Modification of titanium surface with octadecyl-trichlorosilane and its effects on electrochemical deposition of calcium phosphate[J]. Rare Metal Materials and Engineering, 2015, 44(6): 1379-1384. | |
| [30] | 李瑾. 聚垢材料对垢沉积速率影响规律研究[D]. 西安: 西安石油大学, 2020. |
| LI Jin. Study on the influence of scale-accumulating materials on scale deposition rate[D]. Xi’an: Xi’an Shiyou University, 2020. | |
| [31] | Gamzenur ÖZSIN, Murat KıLıÇ, KıRBıYıK KURUKAVAK Çisem, et al. Thermal characteristics, stability, and degradation of PVC composites and nanocomposites[M]//Poly(vinyl chloride) based composites and nanocomposites. Cham: Springer International Publishing, 2023: 293-318. |
| [32] | LIU Jianshu, CAO Yang. Experimental study on the surface tension of magnetized water[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105091. |
| [33] | CHEN Long, LI Chuan jun, REN Zhong ming. Variation of surface tension of water in high magnetic field[J]. Advanced Materials Research, 2013, 750/751/752: 2279-2282. |
| [34] | LATIFA Sirine BEN, Hélène CHEAP-CHARPENTIER, PERROT Hubert, et al. Effects of magnetic field on homogeneous and heterogeneous precipitation of calcium carbonate[J]. ChemElectroChem, 2023, 10(14): e202300105. |
| [35] | 高洪江. 外加磁场对不同基体材料表面化学镀工艺的影响研究[D]. 青岛: 青岛科技大学, 2016. |
| GAO Hongjiang. Study on the effect of external magnetic field on electroless plating process of different substrate materials[D]. Qingdao: Qingdao University of Science & Technology, 2016. | |
| [36] | SUN Nana, JIANG Huayi, LIANG Aiguo, et al. Influences of material types on the mechanisms of crystal growth in an aggregate scaling device[J]. International Communications in Heat and Mass Transfer, 2019, 108: 104303. |
| [1] | YANG Shini, XU Yudong. Preparation of gypsum whisker from the gypsum sludge derived in a close-loop treatment process for leachate nanofiltration concentrate [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5450-5459. |
| [2] | YANG Yong, ZHANG Zhao, WANG Dongliang, ZHOU Huairong, ZHAO Zihao, LI Yukun. Technical-economic evaluation for different separation strategies of xylene isomers [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4732-4740. |
| [3] | SUN Jinlei, LIAO Dankui, CHEN Xiaopeng, TONG Zhangfa. Preparation of spheroidal nano-calcium carbonate via high gravity-microinterface method [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3757-3769. |
| [4] | XU Zhicheng, GAO Ningbo, QUAN Cui, SONG Qingbin. Research progress on synergistic catalytic conversion of biomass gasification tar by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3432-3442. |
| [5] | XU Jingdong, LIU Ben, WANG Xueqin, DONG Peng, XI Zhixiang, XU Renwei, YUE Yuanyuan. Green synthesis and NH3-SCR performance of FeCu-ZSM-5 zeolite [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3017-3030. |
| [6] | XUE Lixin, DONG Yongping, CHEN Mengyao, GAO Congjie. Synergistic regulation mechanism of sodium dodecyl sulfate (SDS) and strong base (NaOH) on polyamide composite nanofiltration memrbanes [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2225-2237. |
| [7] | CAO Yonggang, ZHANG Zilong, LI Zehao, LI Zeyou, GU Yin, XUE Kui, WANG Jialiang, HUANG Wei. Research progress on preparation of α-hemihydrate gypsum from industrial by-product gypsum [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1505-1519. |
| [8] | LIU Dongmei, ZHUANG Zhaolin, WANG Qing, DIAO Huali, XU Gang, PENG Yanzhou, BAO Hao, LI Dongsheng. Preparation of calcium carbonate powder by phosphogypsum mineralization for CO2 capture [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 66-74. |
| [9] | XIE Yulin, RAU Jui-yeh, HUANG Jian, HAO Jiayi, WANG Youyi, HUANG Qi. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418. |
| [10] | WANG Bowei, ZHENG Mingzhen, WANG Lemeng, FU Dong, WANG Shan, ZHU Shengjun, ZHAO Kun, ZHANG Pan. Preparation of NaOH for CO2 capture by electrolysis of Na2SO4 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 604-614. |
| [11] | HE Haixia, WAN Yameng, LI Fanfan, NIU Xinyu, ZHANG Jingwen, LI Tao, REN Baozeng. Kinetics and crystallization process of naphazoline hydrochloride in methanol-ethyl acetate system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4230-4245. |
| [12] | XIANG Rui, AI Bo, WU Gaosheng, LI Yuzhe, ZONG Rui, XU Baoyun, DU Lijun. Measurement and regression of solid-liquid binary equilibrium data for lithium battery additive FEC-VC system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4246-4252. |
| [13] | WU Zhe, QU Shuguang, FENG Lianxiang, ZENG Xiangchu. Adsorption performance and mechanism of sodium alginate/microcrystalline cellulose composite hydrogel for aqueous methyl orange and methylene blue [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4681-4693. |
| [14] | HUAI Liye, ZHONG Zhaoping, YANG Yuxuan. Characteristics and mechanism of desulfurization gypsum to α-hemihydrate gypsum: Experiments and simulations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4694-4703. |
| [15] | XIAN Xuequan, DU Fangli, LIU Zhonglin, LIU Wanyu, LI Yanming, LONG Siyu, HUANG Hualin. Preparation and formation mechanism of vaterite calcium carbonate microspheres by PEG/Na2CO3 aqueous two-phase emulsion method [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3221-3231. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |