Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6737-6746.DOI: 10.16085/j.issn.1000-6613.2024-1742
• Resources and environmental engineering • Previous Articles
WANG Le(
), XU Qiaoying, KUANG Renyun, ZENG Keni, FU Wenjie, HOU Linli(
)
Received:2024-10-30
Revised:2024-12-11
Online:2025-12-08
Published:2025-11-25
Contact:
HOU Linli
王乐(
), 徐桥英, 匡仁云, 曾可妮, 傅文杰, 候林丽(
)
通讯作者:
候林丽
作者简介:王乐(2000—),女,硕士研究生,研究方向为共价有机框架材料传感与吸附。E-mail:2307301006@jgsu.edu.cn。
基金资助:CLC Number:
WANG Le, XU Qiaoying, KUANG Renyun, ZENG Keni, FU Wenjie, HOU Linli. Preparation of ionic covalent organic framework materials and their adsorption properties for non-steroidal anti-inflammatory drugs[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6737-6746.
王乐, 徐桥英, 匡仁云, 曾可妮, 傅文杰, 候林丽. 离子型共价有机框架材料的制备及对非甾体类抗炎药的吸附性能[J]. 化工进展, 2025, 44(11): 6737-6746.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1742
| 伪一级动力学模型 | 伪二级动力学模型 | |||||
|---|---|---|---|---|---|---|
| qe/mg·g-1 | K1/min-1 | R2 | qe/mg·g-1 | K2/g·mg-1·min-1 | R2 | |
| 294 | 0.05805 | 0.94876 | 497.51 | 0.00074 | 0.99704 | |
| 伪一级动力学模型 | 伪二级动力学模型 | |||||
|---|---|---|---|---|---|---|
| qe/mg·g-1 | K1/min-1 | R2 | qe/mg·g-1 | K2/g·mg-1·min-1 | R2 | |
| 294 | 0.05805 | 0.94876 | 497.51 | 0.00074 | 0.99704 | |
| Langmuir模型 | Freundlich模型 | |||||
|---|---|---|---|---|---|---|
| qmax/mg·g-1 | KL/L·mg-1 | R2 | KF/mg·g-1·(mg·L)-1/n | n | R2 | |
| 473.93 | 0.22860 | 0.98666 | 103.85 | 2.34582 | 0.95784 | |
| Langmuir模型 | Freundlich模型 | |||||
|---|---|---|---|---|---|---|
| qmax/mg·g-1 | KL/L·mg-1 | R2 | KF/mg·g-1·(mg·L)-1/n | n | R2 | |
| 473.93 | 0.22860 | 0.98666 | 103.85 | 2.34582 | 0.95784 | |
| 吸附剂 | 目标吸附药物 | 最大吸附量/mg·g-1 | 比表面积/m²·g-1 | 平衡时间/h | 参考文献 |
|---|---|---|---|---|---|
| COF-NO2 | 布洛芬 | 94 | 679 | 2 | [ |
| OH-MCOF | 双氯芬酸钠 | 203 | 89.80 | 0.5 | [ |
| MCC/COF/PANI | 吲哚美辛 | 149.1 | 69.86 | 1 | [ |
| COF-3-NH2 | 双氯芬酸钠 | 410 | 114 | 1 | [ |
| iCOFs | 吲哚美欣 | 498 | 34.63 | 1 | 本次工作 |
| 吸附剂 | 目标吸附药物 | 最大吸附量/mg·g-1 | 比表面积/m²·g-1 | 平衡时间/h | 参考文献 |
|---|---|---|---|---|---|
| COF-NO2 | 布洛芬 | 94 | 679 | 2 | [ |
| OH-MCOF | 双氯芬酸钠 | 203 | 89.80 | 0.5 | [ |
| MCC/COF/PANI | 吲哚美辛 | 149.1 | 69.86 | 1 | [ |
| COF-3-NH2 | 双氯芬酸钠 | 410 | 114 | 1 | [ |
| iCOFs | 吲哚美欣 | 498 | 34.63 | 1 | 本次工作 |
| [1] | MARMON Philip, OWEN Stewart F, Luigi MARGIOTTA-CASALUCI. Pharmacology-informed prediction of the risk posed to fish by mixtures of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment[J]. Environment International, 2021, 146: 106222. |
| [2] | SONDERGAARD Kathrine Bach, GISLASON Gunnar. NSAIDs and cardiac arrest: Non-steroidal anti-inflammatory drug use is associated with increased risk of out-of-hospital cardiac arrest: A nationwide case-time-control study[J]. European Heart Journal, 2017, 38(23): 1788-1789. |
| [3] | SCHULMAN Sam, AISENBERG James. Are NSAIDs double trouble?[J]. Journal of the American College of Cardiology, 2018, 72(3): 268-270. |
| [4] | KOUMAKI Elena, MAMAIS Daniel, NOUTSOPOULOS Constantinos. Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems[J]. Journal of Hazardous Materials, 2017, 323: 233-241. |
| [5] | TAN Chaoqun, XU Tianhui, HE Huan, et al. Bimetallic oxychloride as an efficient oxone activator: Radical and non-radical oxidation of non-steroidal anti-inflammatory drugs[J]. Chemical Engineering Journal, 2020, 400: 125921. |
| [6] | DONG Huiyu, QIANG Zhimin, YUAN Xiangjuan, et al. Effects of bromide and iodide on the chlorination of diclofenac: Accelerated chlorination and enhanced formation of disinfection by-products[J]. Separation and Purification Technology, 2018, 193: 415-420. |
| [7] | ALMEIDA B, OEHMEN A, MARQUES R, et al. Modelling the biodegradation of non-steroidal anti-inflammatory drugs (NSAIDs) by activated sludge and a pure culture[J]. Bioresource Technology, 2013, 133: 31-37. |
| [8] | MO Peiying, FU Daijun, CHEN Ping, et al. Ionic covalent organic frameworks for non-steroidal anti-inflammatory drugs (NSAIDs) removal from aqueous solution: Adsorption performance and mechanism[J]. Separation and Purification Technology, 2021, 278: 119238. |
| [9] | SILVA Thiago Lopes DA, COSTA Camila Stéfanne Dias, DA SILVA Meuris Gurgel Carlos, et al. Overview of non-steroidal anti-inflammatory drugs degradation by advanced oxidation processes[J]. Journal of Cleaner Production, 2022, 346: 131226. |
| [10] | 候林丽, 何非凡, 黄春芳, 等. 荧光共价有机框架材料在分析检测中的应用进展[J]. 分析化学, 2023, 51(11): 1714-1723. |
| HOU Linli, HE Feifan, HUANG Chunfang, et al. Application progresses of fluorescent covalent organic frameworks in analysis and detection[J]. Chinese Journal of Analytical Chemistry, 2023, 51(11): 1714-1723. | |
| [11] | HUANG Lijin, MAO Naqing, YAN Qian, et al. Magnetic covalent organic frameworks for the removal of diclofenac sodium from water[J]. ACS Applied Nano Materials, 2020, 3(1): 319-326. |
| [12] | LIANG Ying, FENG Lijuan, LIU Xin, et al. Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning[J]. Chemical Engineering Journal, 2021, 404: 127095. |
| [13] | MI Xin, ZHOU Shuangxi, ZHOU Ziming, et al. Adsorptive removal of diclofenac sodium from aqueous solution by magnetic COF: Role of hydroxyl group on COF[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125238. |
| [14] | WEI Jinxia, SHAO Xin, GUO Jinbiao, et al. Rapid and selective removal of aristolochic acid Ⅰ in natural products by vinylene-linked iCOF resins[J]. Journal of Hazardous Materials, 2024, 461: 132140. |
| [15] | Hongju DA, YANG Chengxiong, QIAN Hailong, et al. A knot-linker planarity control strategy for constructing highly crystalline cationic covalent organic frameworks: Decoding the effect of crystallinity on adsorption performance[J]. Journal of Materials Chemistry A, 2020, 8(25): 12657-12664. |
| [16] | Haijie BEN, DU Wanglong, ZHAO Junhua, et al. Ionic covalent organic frameworks: From synthetic strategies to advanced electro-, photo-, and thermo- energy functionalities[J]. Coordination Chemistry Reviews, 2024, 517: 216003. |
| [17] | XU Huilong, SUN Hao, ZHANG Junyu, et al. Construction and ReO4-adsorption of ionic covalent organic frameworks by solvothermal synthesis based on Zincke reaction[J]. Separation and Purification Technology, 2024, 333: 125895. |
| [18] | SUN Mingxia, FENG Juanjuan, FENG Yang, et al. Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction[J]. TrAC Trends in Analytical Chemistry, 2022, 157: 116829. |
| [19] | LI Haoze, YANG Cheng, QIAN Hailong, et al. Room-temperature synthesis of ionic covalent organic frameworks for efficient removal of diclofenac sodium from aqueous solution[J]. Separation and Purification Technology, 2023, 306: 122704. |
| [20] | LI Ke, QUAN Xueping, YAN Bing. Eu(Ⅲ)-functionalized iCOF hybrids by “tandem post-synthetic modifications” for fluorescent detection of folic acid and trimethoprim: A logical judgment by combination of neural networks and logic gates[J]. Sensors and Actuators B: Chemical, 2023, 392: 134078. |
| [21] | Gobinda DAS, GARAI Bikash, PRAKASAM Thirumurugan, et al. Fluorescence turn on amine detection in a cationic covalent organic framework[J]. Nature Communications, 2022, 13(1): 3904. |
| [22] | LI Yuanyuan, FENG Jingbo, WANG Rui, et al. The efficient removal of diclofenac and indomethacin with novel polyaniline-modified microcrystalline cellulose/covalent organic framework nanocomposites[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 145: 104834. |
| [23] | XIONG Fangfang, JIANG Liyan, JIA Qiong. Facile synthesis of guanidyl-based magnetic ionic covalent organic framework composites for selective enrichment of phosphopeptides[J]. Analytica Chimica Acta, 2020, 1099: 103-110. |
| [24] | LIN Zili, JIN Yuhan, CHEN Yongxian, et al. Leaf-like ionic covalent organic framework for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs: Adsorption performance and mechanism insights[J]. Journal of Colloid and Interface Science, 2023, 645: 943-955. |
| [25] | Santa JANSONE-POPOVA, MOINEL Anthonin, SCHOTT Jennifer A, et al. Guanidinium-based ionic covalent organic framework for rapid and selective removal of toxic Cr(VI) oxoanions from water[J]. Environmental Science & Technology, 2019, 53(2): 878-883. |
| [26] | SINGH Harpreet, DEVI Manisha, JENA Nityasagar, et al. Proton-triggered fluorescence switching in self-exfoliated ionic covalent organic nanosheets for applications in selective detection of anions[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13248-13255. |
| [27] | MITRA Shouvik, KANDAMBETH Sharath, BISWAL Bishnu P, et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs)[J]. Journal of the American Chemical Society, 2016, 138(8): 2823-2828. |
| [28] | ZHANG Menghan, WANG Wei, ZHANG Qianxin, et al. Pore surface engineering of covalent organic frameworks by simultaneously appending amine group and tailoring pore size for efficient adsorption of diclofenac sodium[J]. Chemical Engineering Journal, 2023, 459: 141561. |
| [1] | WANG Ruiqi, LIU Haowei, SUN Yanli, LI Ronghua, WANG Zheng, WU Yuhua, WU Jianbo, ZHANG Hui, BAI Hongcun. Analysis and outlook on the current research state in design, construction and performance regulation of MOFs for efficient hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 323-339. |
| [2] | LIU Ying, BAO Cheng, ZHANG Xinxin. Modified copper-carrying activated carbon for hydrogen purification [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 413-421. |
| [3] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [4] | YANG Zhenglu, YANG Lifeng, LU Xiaofei, SUO Xian, ZHANG Anyun, CUI Xili, XING Huabin. Advances in machine learning accelerating the screening and discovery of porous adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4288-4301. |
| [5] | QIU Yujing, LIU Chang, LUO Guohua, DONG Sen, LI Jianhua. Preparation and adsorption performance of adsorbents for removing carbon disulfide from benzene [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2374-2382. |
| [6] | LIU Qian, LI Mengru, BAI Shouli, FENG Yongjun, TANG Pinggui, LI Dianqing. Preparation and adsorption performance to methylene blue of fly ash based magnesium silicate nanosheets [J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6716-6729. |
| [7] | NI Peng, WANG Xianhong, HUANG Yuhan, MA Xiaotong, MA Zizhen, TAN Yan, ZHANG Huawei, LIU Ting. Latest progress and comparison of the injection demercuration application of activated carbon and magnetic metals adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 513-524. |
| [8] | ZHANG Wei, HUANG Jiu, ZHU Xiaofang, LI Peng. Performance and mechanism of lead adsorption using attapulgite-based cobalt-tungsten hydrotalcite adsorbent [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 596-606. |
| [9] | YANG Xinheng, JI Zhiyong, GUO Zhiyuan, LIU Qi, ZHANG Panpan, WANG Jing, LIU Jie, BI Jingtao, ZHAO Yingying, YUAN Junsheng. Preparation of lithium aluminum layered double hydroxides and their lithium deintercalation performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5262-5274. |
| [10] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
| [11] | WU Zhe, QU Shuguang, FENG Lianxiang, ZENG Xiangchu. Adsorption performance and mechanism of sodium alginate/microcrystalline cellulose composite hydrogel for aqueous methyl orange and methylene blue [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4681-4693. |
| [12] | HUANG Hong, OUYANG Haomin, YANG Yijing, LI Changlin, CHEN Shuona. Adsorption-degradation mechanism of tris(2-chloroethyl)phosphate by a composite adsorbent of zero-valent iron sulfide and microorganism [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4704-4713. |
| [13] | ZHI Yuan, MA Jiliang, CHEN Xiaoping, LIU Daoyin, LIANG Cai. Decarbonization capability of supported Na-based CO2 adsorbents prepared by fluidized bed spray impregnation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2961-2967. |
| [14] | LIU Jingdu, YU Guanlong, LONG Zhiqi, ZHOU Lu, BAO Purui, TENG Junyi, DU Chunyan. Preparation of nano-spherical LaAlO3 and its fluoride removal performance under acidic environment [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3199-3208. |
| [15] | MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |