| [1] |
ZUIDEMA Jonathan M, Matthew M PAP, JAROCH David B, et al. Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair[J]. Acta Biomaterialia, 2011, 7(4): 1634-1643.
|
| [2] |
孙天琦, 唐会程, 赵增典, 等. 基于硼酸酯动态共价键双网络水凝胶在柔性传感器中的应用研究[J]. 化学与生物工程, 2023, 40(7): 52-60.
|
|
SUN Tianqi, TANG Huicheng, ZHAO Zengdian, et al. Application of double-network hydrogel based on dynamic borate covalent bond in flexible sensor[J]. Chemistry & Bioengineering, 2023, 40(7): 52-60.
|
| [3] |
QI Qiukai, KELLER Alexander, TAN Lihaoya, et al. Edible, optically modulating, shape memory oleogel composites for sustainable soft robotics[J]. Materials & Design, 2023, 235: 112339.
|
| [4] |
BAO Dequan, WEN Zhen, SHI Jihong, et al. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature[J]. Journal of Materials Chemistry A, 2020, 8(27): 13787-13794.
|
| [5] |
ZHANG Xiongfei, MA Xiaofeng, HOU Ting, et al. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels[J]. Angewandte Chemie International Edition, 2019, 58(22): 7366-7370.
|
| [6] |
JIAN Yukun, Stephan HANDSCHUH-WANG, ZHANG Jiawei, et al. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments[J]. Materials Horizons, 2021, 8(2): 351-369.
|
| [7] |
QIN Zhihui, SUN Xia, ZHANG Haitao, et al. A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature[J]. Journal of Materials Chemistry A, 2020, 8(8): 4447-4456.
|
| [8] |
WANG Wentang, DENG Xinyue, LU Jinlong, et al. Conductive hydrogels with core-shell structures to realize super-stretchable, highly sensitive, anti-dehydrating, non-freezing and self-adhesive capabilities[J]. Journal of Materials Chemistry C, 2023, 11(40): 13857-13864.
|
| [9] |
WANG Yanqin, ZHU Yu, ZHANG Xuehui, et al. Luminescent composite organohydrogels with Fe3+, pH, and glucose-dependent shape memory behavior accompanied with diverse fluorescence variation[J]. Chemical Engineering Journal, 2022, 450: 137930.
|
| [10] |
PANPINIT Sanit, PONGSOMBOON Song-Amnart, KEAWIN Tinnagon, et al. Development of multicomponent interpenetrating polymer network (IPN) hydrogel films based on 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM), polyvinyl alcohol (PVA) and chitosan (CS) with enhanced mechanical strengths, water swelling and antibacterial properties[J]. Reactive and Functional Polymers, 2020, 156: 104739.
|
| [11] |
YE Yuhang, ZHANG Yifan, CHEN Yuan, et al. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors[J]. Advanced Functional Materials, 2020, 30(35): 2003430 -2003442.
|
| [12] |
WEI Dandan, YANG Jia, ZHU Lin, et al. Fully physical double network hydrogels with high strength, rapid self-recovery and self-healing performances[J]. Polymer Testing, 2018, 69: 167-174.
|
| [13] |
DAI Shengping, HU Xinghao, XU Xiuzhu, et al. Low temperature tolerant, ultrasensitive strain sensors based on self-healing hydrogel for self-monitor of human motion[J]. Synthetic Metals, 2019, 257: 116177.
|
| [14] |
FENG Enke, LI Xiaoqin, ZHANG Mengzhen, et al. Superior low-temperature tolerant, self-adhesive and antibacterial hydrogels for wearable sensors and communication devices[J]. Journal of Materials Chemistry C, 2023, 11(31): 10573-10583.
|
| [15] |
ZHANG Bowen, GUO Qing, DAI Bushi, et al. Quality optimization of Bi2212 films prepared by aqueous solvent sol-gel method with nonionic surfactants[J]. Ceramics International, 2022, 48(24): 36845-36852.
|
| [16] |
MI Haoyang, JING Xin, WANG Yuyuan, et al. Poly[(butyl acrylate)-co-(butyl methacrylate)] as transparent tribopositive material for high-performance hydrogel-based triboelectric nanogenerators[J]. ACS Applied Polymer Materials, 2020, 2(11): 5219-5227.
|
| [17] |
ASHRAFIZADEH Marjan, Kam Chiu TAM, JAVADI Aliyar, et al. Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems[J]. Journal of Colloid and Interface Science, 2019, 556: 313-323.
|
| [18] |
ZHAO Bencheng, YUE Xuejie, TIAN Qiong, et al. Bio-inspired BC aerogel/PVA hydrogel bilayer gel for enhanced daytime sub-ambient building cooling[J]. Cellulose, 2022, 29(14): 7775-7787.
|
| [19] |
YANG Jen Ming, WANG Hung Zen, YANG CHUN Chen. Modification and characterization of semi-crystalline poly(vinyl alcohol) with interpenetrating poly(acrylic acid) by UV radiation method for alkaline solid polymer electrolytes membrane[J]. Journal of Membrane Science, 2008, 322(1): 74-80.
|
| [20] |
LIEW Chiam-Wen, RAMESH S, AROF A K. Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties[J]. International Journal of Hydrogen Energy, 2014, 39(6): 2953-2963.
|
| [21] |
MANDAL Suvendu, DASMAHAPATRA Ashok Kumar. Effect of aging on the microstructure and physical properties of Poly(vinyl alcohol) hydrogel[J]. Journal of Polymer Research, 2021, 28(7): 269.
|
| [22] |
BAI Chenhui, LI Xuebiao, CUI Xiaojing, et al. Transparent stretchable thermogalvanic PVA/gelation hydrogel electrolyte for harnessing solar energy enabled by a binary solvent strategy[J]. Nano Energy, 2022, 100: 107449.
|