Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6161-6173.DOI: 10.16085/j.issn.1000-6613.2024-1561
• Chemical processes and equipment • Previous Articles
XING Lei1,2,3(
), LIU Duo1, JIANG Minghu1,2(
), ZHAO Lixin1,2, LI Xinya1, GAO Yang4
Received:2024-09-25
Revised:2025-02-24
Online:2025-12-08
Published:2025-11-25
Contact:
JIANG Minghu
邢雷1,2,3(
), 刘铎1, 蒋明虎1,2(
), 赵立新1,2, 李新亚1, 高扬4
通讯作者:
蒋明虎
作者简介:邢雷(1990—),男,博士,教授,博士生导师,研究方向为旋流分离理论及应用技术、同井注采技术。E-mail:Nepuxinglei@163.com。
基金资助:CLC Number:
XING Lei, LIU Duo, JIANG Minghu, ZHAO Lixin, LI Xinya, GAO Yang. Structure optimization and performance analysis of axial-inlet downhole gas-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6161-6173.
邢雷, 刘铎, 蒋明虎, 赵立新, 李新亚, 高扬. 轴入式井下气液旋流分离器结构优化与性能分析[J]. 化工进展, 2025, 44(11): 6161-6173.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1561
| 结构参数 | 尺寸/mm |
|---|---|
| 螺旋流道长度L1 | 200 |
| 柱段旋流腔长度L2 | 500 |
| 一级锥段长度L3 | 80 |
| 二级锥段长度L4 | 150 |
| 底流管长度L5 | 200 |
| 溢流管插入长度L6 | 10 |
| 溢流管内径D1 | 48 |
| 一级锥段底部外径D2 | 44 |
| 二级锥段底部外径D3 | 64 |
| 结构参数 | 尺寸/mm |
|---|---|
| 螺旋流道长度L1 | 200 |
| 柱段旋流腔长度L2 | 500 |
| 一级锥段长度L3 | 80 |
| 二级锥段长度L4 | 150 |
| 底流管长度L5 | 200 |
| 溢流管插入长度L6 | 10 |
| 溢流管内径D1 | 48 |
| 一级锥段底部外径D2 | 44 |
| 二级锥段底部外径D3 | 64 |
| 因素 | 符号 | 水平/mm | 锥度/mm | |
|---|---|---|---|---|
| 低(-1) | 高(+1) | |||
| 螺旋流道长度L1 | A | 160 | 240 | 80 |
| 柱段旋流腔长度L2 | B | 400 | 600 | 200 |
| 一级锥段长度L3 | C | 70 | 90 | 20 |
| 二级锥段长度L4 | D | 140 | 160 | 20 |
| 底流管长度L5 | E | 160 | 240 | 80 |
| 溢流管插入长度L6 | F | 5 | 15 | 10 |
| 溢流管内径D1 | G | 32 | 48 | 16 |
| 一级锥段底部外径D2 | H | 40 | 48 | 8 |
| 二级锥段底部外径D3 | J | 60 | 68 | 8 |
| 因素 | 符号 | 水平/mm | 锥度/mm | |
|---|---|---|---|---|
| 低(-1) | 高(+1) | |||
| 螺旋流道长度L1 | A | 160 | 240 | 80 |
| 柱段旋流腔长度L2 | B | 400 | 600 | 200 |
| 一级锥段长度L3 | C | 70 | 90 | 20 |
| 二级锥段长度L4 | D | 140 | 160 | 20 |
| 底流管长度L5 | E | 160 | 240 | 80 |
| 溢流管插入长度L6 | F | 5 | 15 | 10 |
| 溢流管内径D1 | G | 32 | 48 | 16 |
| 一级锥段底部外径D2 | H | 40 | 48 | 8 |
| 二级锥段底部外径D3 | J | 60 | 68 | 8 |
| 实验组 | 因素 | E/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| A(L1) | B(L2) | C(L3) | D(L4) | E(L5) | F(L6) | G(D1) | H(D2) | J(D3) | ||
| 1 | 240 | 600 | 70 | 160 | 240 | 15 | 32 | 40 | 60 | 93.690 |
| 2 | 160 | 600 | 90 | 140 | 240 | 15 | 48 | 40 | 60 | 93.942 |
| 3 | 240 | 400 | 90 | 160 | 160 | 15 | 48 | 48 | 60 | 95.596 |
| 4 | 160 | 600 | 70 | 160 | 240 | 5 | 48 | 48 | 68 | 95.088 |
| 5 | 160 | 400 | 90 | 140 | 240 | 15 | 32 | 48 | 68 | 95.232 |
| 6 | 160 | 400 | 70 | 160 | 160 | 15 | 48 | 40 | 68 | 95.777 |
| 7 | 240 | 400 | 70 | 140 | 240 | 5 | 48 | 48 | 60 | 95.997 |
| 8 | 240 | 600 | 70 | 140 | 160 | 15 | 32 | 48 | 68 | 94.526 |
| 9 | 240 | 600 | 90 | 140 | 160 | 5 | 48 | 40 | 68 | 95.299 |
| 10 | 160 | 600 | 90 | 160 | 160 | 5 | 32 | 48 | 60 | 94.655 |
| 11 | 240 | 400 | 90 | 160 | 240 | 5 | 32 | 40 | 68 | 95.724 |
| 12 | 160 | 400 | 70 | 140 | 160 | 5 | 32 | 40 | 60 | 96.224 |
| 实验组 | 因素 | E/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| A(L1) | B(L2) | C(L3) | D(L4) | E(L5) | F(L6) | G(D1) | H(D2) | J(D3) | ||
| 1 | 240 | 600 | 70 | 160 | 240 | 15 | 32 | 40 | 60 | 93.690 |
| 2 | 160 | 600 | 90 | 140 | 240 | 15 | 48 | 40 | 60 | 93.942 |
| 3 | 240 | 400 | 90 | 160 | 160 | 15 | 48 | 48 | 60 | 95.596 |
| 4 | 160 | 600 | 70 | 160 | 240 | 5 | 48 | 48 | 68 | 95.088 |
| 5 | 160 | 400 | 90 | 140 | 240 | 15 | 32 | 48 | 68 | 95.232 |
| 6 | 160 | 400 | 70 | 160 | 160 | 15 | 48 | 40 | 68 | 95.777 |
| 7 | 240 | 400 | 70 | 140 | 240 | 5 | 48 | 48 | 60 | 95.997 |
| 8 | 240 | 600 | 70 | 140 | 160 | 15 | 32 | 48 | 68 | 94.526 |
| 9 | 240 | 600 | 90 | 140 | 160 | 5 | 48 | 40 | 68 | 95.299 |
| 10 | 160 | 600 | 90 | 160 | 160 | 5 | 32 | 48 | 60 | 94.655 |
| 11 | 240 | 400 | 90 | 160 | 240 | 5 | 32 | 40 | 68 | 95.724 |
| 12 | 160 | 400 | 70 | 140 | 160 | 5 | 32 | 40 | 60 | 96.224 |
| 实验组 | L2/mm | L5/mm | L6/mm | D1/mm | E/% |
|---|---|---|---|---|---|
| 1 | 390 | 155 | 4.8 | 33.5 | 95.271 |
| 2 | 380 | 150 | 4.6 | 35 | 95.942 |
| 3 | 370 | 145 | 4.4 | 36.5 | 96.353 |
| 4 | 360 | 140 | 4.2 | 38 | 96.492 |
| 5 | 350 | 135 | 4 | 39.5 | 96.626 |
| 6 | 340 | 130 | 3.8 | 41 | 96.691 |
| 7 | 330 | 125 | 3.6 | 42.5 | 96.755 |
| 8 | 320 | 120 | 3.4 | 44 | 96.898 |
| 9 | 310 | 115 | 3.2 | 45.5 | 97.117 |
| 10 | 300 | 110 | 3 | 47 | 96.942 |
| 11 | 290 | 105 | 2.8 | 48.5 | 96.684 |
| 12 | 280 | 100 | 2.6 | 50 | 96.433 |
| 13 | 270 | 95 | 2.4 | 51.5 | 95.925 |
| 实验组 | L2/mm | L5/mm | L6/mm | D1/mm | E/% |
|---|---|---|---|---|---|
| 1 | 390 | 155 | 4.8 | 33.5 | 95.271 |
| 2 | 380 | 150 | 4.6 | 35 | 95.942 |
| 3 | 370 | 145 | 4.4 | 36.5 | 96.353 |
| 4 | 360 | 140 | 4.2 | 38 | 96.492 |
| 5 | 350 | 135 | 4 | 39.5 | 96.626 |
| 6 | 340 | 130 | 3.8 | 41 | 96.691 |
| 7 | 330 | 125 | 3.6 | 42.5 | 96.755 |
| 8 | 320 | 120 | 3.4 | 44 | 96.898 |
| 9 | 310 | 115 | 3.2 | 45.5 | 97.117 |
| 10 | 300 | 110 | 3 | 47 | 96.942 |
| 11 | 290 | 105 | 2.8 | 48.5 | 96.684 |
| 12 | 280 | 100 | 2.6 | 50 | 96.433 |
| 13 | 270 | 95 | 2.4 | 51.5 | 95.925 |
| 因素 | 符号 | 单位 | 水平 | ||
|---|---|---|---|---|---|
| 低水平(-1) | 中心点(0) | 高水平(+1) | |||
| 柱段旋流腔长度L2 | B | mm | 280 | 310 | 340 |
| 底流管长度L5 | E | mm | 100 | 115 | 130 |
| 溢流管插入长度L6 | F | mm | 2.6 | 3.2 | 3.8 |
| 溢流管内径D1 | G | mm | 41 | 45.5 | 50 |
| 因素 | 符号 | 单位 | 水平 | ||
|---|---|---|---|---|---|
| 低水平(-1) | 中心点(0) | 高水平(+1) | |||
| 柱段旋流腔长度L2 | B | mm | 280 | 310 | 340 |
| 底流管长度L5 | E | mm | 100 | 115 | 130 |
| 溢流管插入长度L6 | F | mm | 2.6 | 3.2 | 3.8 |
| 溢流管内径D1 | G | mm | 41 | 45.5 | 50 |
| 类型 | 自由度 | 离散平方和 | 均方 | F | P |
|---|---|---|---|---|---|
| 模型 | 14 | 9.48 | 0.68 | 13.84 | <0.0001 |
| x1 | 1 | 6.35 | 6.35 | 129.84 | <0.0001 |
| x2 | 1 | 1.02 | 1.02 | 20.76 | 0.0004 |
| x3 | 1 | 0.81 | 0.81 | 16.48 | 0.0012 |
| x4 | 1 | 0.30 | 0.30 | 6.20 | 0.0259 |
| x1x2 | 1 | 1.634×10-4 | 1.634×10-4 | 3.341×10-3 | 0.9547 |
| x1x3 | 1 | 2.782×10-4 | 2.782×10-4 | 5.688×10-3 | 0.9410 |
| x1x4 | 1 | 1.538×10-4 | 1.538×10-4 | 3.143×10-3 | 0.9561 |
| x2x3 | 1 | 0.24 | 0.24 | 5.01 | 0.0420 |
| x2x4 | 1 | 4.290×10-5 | 4.290×10-5 | 8.770×10-4 | 0.9768 |
| x3x4 | 1 | 0.46 | 0.46 | 9.34 | 0.0085 |
| x | 1 | 0.032 | 0.032 | 0.65 | 0.4338 |
| x | 1 | 0.018 | 0.018 | 0.36 | 0.5573 |
| x | 1 | 0.22 | 0.22 | 4.44 | 0.0536 |
| x | 1 | 6.486×10-3 | 6.486×10-3 | 0.13 | 0.7212 |
| 残差 | 14 | 0.68 | 0.049 | ||
| 失拟项 | 10 | 0.68 | 0.068 | ||
| 纯误差 | 4 | 0 | 0 | ||
| 总计 | 28 | 10.16 |
| 类型 | 自由度 | 离散平方和 | 均方 | F | P |
|---|---|---|---|---|---|
| 模型 | 14 | 9.48 | 0.68 | 13.84 | <0.0001 |
| x1 | 1 | 6.35 | 6.35 | 129.84 | <0.0001 |
| x2 | 1 | 1.02 | 1.02 | 20.76 | 0.0004 |
| x3 | 1 | 0.81 | 0.81 | 16.48 | 0.0012 |
| x4 | 1 | 0.30 | 0.30 | 6.20 | 0.0259 |
| x1x2 | 1 | 1.634×10-4 | 1.634×10-4 | 3.341×10-3 | 0.9547 |
| x1x3 | 1 | 2.782×10-4 | 2.782×10-4 | 5.688×10-3 | 0.9410 |
| x1x4 | 1 | 1.538×10-4 | 1.538×10-4 | 3.143×10-3 | 0.9561 |
| x2x3 | 1 | 0.24 | 0.24 | 5.01 | 0.0420 |
| x2x4 | 1 | 4.290×10-5 | 4.290×10-5 | 8.770×10-4 | 0.9768 |
| x3x4 | 1 | 0.46 | 0.46 | 9.34 | 0.0085 |
| x | 1 | 0.032 | 0.032 | 0.65 | 0.4338 |
| x | 1 | 0.018 | 0.018 | 0.36 | 0.5573 |
| x | 1 | 0.22 | 0.22 | 4.44 | 0.0536 |
| x | 1 | 6.486×10-3 | 6.486×10-3 | 0.13 | 0.7212 |
| 残差 | 14 | 0.68 | 0.049 | ||
| 失拟项 | 10 | 0.68 | 0.068 | ||
| 纯误差 | 4 | 0 | 0 | ||
| 总计 | 28 | 10.16 |
| 随机实验组 | L2/mm | L5/mm | L6/mm | D1/mm | E/% |
|---|---|---|---|---|---|
| 1 | 305 | 120 | 3.1 | 45 | 97.2295 |
| 2 | 318 | 115 | 2.8 | 46 | 97.1714 |
| 3 | 329 | 105 | 3.7 | 42 | 97.3951 |
| 4 | 294 | 127 | 3.5 | 43 | 97.1689 |
| 5 | 337 | 122 | 3.0 | 48 | 97.3562 |
| 6 | 287 | 110 | 3.3 | 50 | 97.4032 |
| 7 | 301 | 125 | 3.6 | 44 | 97.2929 |
| 8 | 332 | 116 | 3.2 | 49 | 97.4380 |
| 9 | 320 | 103 | 2.7 | 47 | 97.1848 |
| 10 | 311 | 128 | 2.9 | 41 | 97.0616 |
| 随机实验组 | L2/mm | L5/mm | L6/mm | D1/mm | E/% |
|---|---|---|---|---|---|
| 1 | 305 | 120 | 3.1 | 45 | 97.2295 |
| 2 | 318 | 115 | 2.8 | 46 | 97.1714 |
| 3 | 329 | 105 | 3.7 | 42 | 97.3951 |
| 4 | 294 | 127 | 3.5 | 43 | 97.1689 |
| 5 | 337 | 122 | 3.0 | 48 | 97.3562 |
| 6 | 287 | 110 | 3.3 | 50 | 97.4032 |
| 7 | 301 | 125 | 3.6 | 44 | 97.2929 |
| 8 | 332 | 116 | 3.2 | 49 | 97.4380 |
| 9 | 320 | 103 | 2.7 | 47 | 97.1848 |
| 10 | 311 | 128 | 2.9 | 41 | 97.0616 |
| [1] | JIA Deli, ZHANG Jiqun, SUN Yufei, et al. Collaboration between oil development and water/power consumption in high-water-cut oilfields[J]. Sustainability, 2023, 15(14): 1-24. |
| [2] | PAN Shaowei, WANG Zhaoyang, LUO Haining. Simulation research on microscopic remaining oil distribution in high water cut oilfield[J]. IOP Conference Series: Earth and Environmental Science, 2021, 647(1): 012074. |
| [3] | LIU Xiaona. Analysis of measures to improve the technical level of late development of high water cut oilfield[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781(2): 022054. |
| [4] | 刘合, 郝忠献, 王连刚, 等. 人工举升技术现状与发展趋势[J]. 石油学报, 2015, 36(11): 1441-1448. |
| LIU He, HAO Zhongxian, WANG Liangang, et al. Current technical status and development trend of artificial lift[J]. Acta Petrolei Sinica, 2015, 36(11): 1441-1448. | |
| [5] | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
| LIU He, GAO Yang, PEI Xiaohan, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
| [6] | ZHAN Min, CHENG Xinping, YANG Wanyou, et al. Numerical investigation on the swirler parameters for an axial liquid-liquid hydrocyclone[J]. IOP Conference Series: Earth and Environmental Science, 2021, 675(1): 012210. |
| [7] | 张春影.轴流导叶式水力旋流器结构设计与性能研究[D]. 东营:中国石油大学(华东), 2021. |
| ZHANG Chunying. Research on the structure design and performance of axial flow guide vane hydrocyclone[D]. Dongying: China University of Petroleum (East China), 2021. | |
| [8] | ZENG Xiaobo, ZHAO Le, ZHAO Weiguang, et al. Experimental study on a novel axial separator for oil-water separation[J]. Industrial Engineering Chemistry Research, 2020, 59(48): 21177-21186. |
| [9] | 贾朋, 陈家庆, 蔡小垒, 等. 基于CFD-PBM模拟水力旋流器油水分离特性研究[J]. 石油化工高等学校学报, 2021, 34(4): 58-65. |
| JIA Peng, CHEN Jiaqing, CAI Xiaolei, et al. Study on oil-water separation characteristics of hydrocyclone based on CFD-PBM numerical simulation[J]. Journal of Petrochemical Universities, 2021, 34(4): 58-65. | |
| [10] | QIU Shunzuo, WANG Guorong, ZHOU Shouwei, et al. The downhole hydrocyclone separator for purifying natural gas hydrate: Structure design, optimization, and performance[J]. Separation Science and Technology, 2020, 55(3): 564-574. |
| [11] | ZHAO Wei, LI Jianping, ZHANG Tong, et al. Strengthened oil-water separation by swirl vane hydrocyclone based on short-circuit flow regulation[J]. Journal of Water Process Engineering, 2024, 65: 105773. |
| [12] | 邢雷, 李金煜, 赵立新, 等. 基于响应面法的井下旋流分离器结构优化[J]. 中国机械工程, 2021, 32(15): 1818-1826. |
| XING Lei, LI Jinyu, ZHAO Lixin, et al. Structural optimization of downhole hydrocyclones based on response surface methodology[J]. China Mechanical Engineering, 2021, 32(15): 1818-1826. | |
| [13] | 赵传伟, 李增亮, 董祥伟, 等. 井下双级串联式水力旋流器数值模拟与实验[J]. 石油学报, 2014, 35(3): 551-557. |
| ZHAO Chuanwei, LI Zengliang, DONG Xiangwei, et al. Numerical simulation and experiment of downhole two-stage tandem hydrocyclone[J]. Acta Petrolei Sinica, 2014, 35(3): 551-557. | |
| [14] | 付伟. 采出液含砂对井下油水旋流分离器的影响研究[D]. 大庆: 东北石油大学, 2016. |
| FU Wei. Study on the influence of sand-containing produced liquid on downhole oil-water hydrocyclone separator[D]. Daqing: Northeast Petroleum University, 2016. | |
| [15] | 王志杰, 李枫, 赵立新. 含聚浓度对旋流器性能影响的数值模拟与试验[J]. 化工进展, 2019, 38(12): 5287-5296. |
| WANG Zhijie, LI Feng, ZHAO Lixin. Numerical simulation and experimental study on the effect of polymer concentration on hydrocyclone performance[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5287-5296. | |
| [16] | 宫磊磊. 采出液含气对井下油水旋流分离器的影响研究[D]. 大庆: 东北石油大学, 2015. |
| GONG Leilei. The research of produced liquid gas-containing having influence on downhole oil-water hydrocyclone separator[D]. Daqing: Northeast Petroleum University, 2015. | |
| [17] | WANG Shoubo, Luis Gomez E., Ram Mohan S., et al. Gas-liquid cylindrical cyclone (GLCC©) compact separators for wet gas applications[J]. Journal of Energy Resources Technology, 2003, 125(1): 43-50. |
| [18] | 张明, 孙欢, 王强强, 等. 管式旋流气液分离器流场特性与分离性能研究[J]. 过程工程学报, 2024, 24(7): 772-782. |
| ZHANG Ming, SUN Huan, WANG Qiangqiang, et al. Study of flow field characteristics and separation performance of inline cyclone gas-liquid separator[J]. The Chinese Journal of Process Engineering, 2024, 24(7): 772-782. | |
| [19] | MENG Fanchen, SHI Shiying, and MA Naiqing. Study of the performance of a new kind of downhole gas-liquid separation with high gas content[J]. Journal of Energy and Natural Resources, 2019, 8(1): 45-49. |
| [20] | 王振波, 李腾, 孙治谦, 等. 级联式气液旋流分离器数值模拟[J]. 中国石油大学学报(自然科学版), 2023, 47(6): 121-129. |
| WANG Zhenbo, LI Teng, SUN Zhiqian, et al. Numerical simulation on cascaded gas-liquid cyclone separator[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(6): 121-129. | |
| [21] | ZHOU Yuhang, CHEN Jianyi, WANG Yaan, et al. Experimental and numerical study on the performance of a new dual-inlet gas-liquid cylindrical cyclone (GLCC) based on flow pattern conditioning[J]. Chemical Engineering Journal, 2023, 453: 139778. |
| [22] | 郑春峰, 杨万有, 孟熙然, 等. 海上高含气井新型井下气液分离器设计及性能评价[J]. 中国海上油气, 2020, 32(6): 128-135. |
| ZHENG Chunfeng, YANG Wanyou, MENG Xiran, et al. Design and performance evaluation of a novel downhole gas-liquid separator for offshore high gas bearing wells[J]. China Offshore Oil and Gas, 2020, 32(6): 128-135. | |
| [23] | LAN Wenjian, WANG Hanxiang, LI Yuquan, et al. Numerical and experimental investigation on a downhole gas-liquid separator for natural gas hydrate exploitation[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109743. |
| [24] | 耿坤, 孙治谦, 李腾, 等. 级联式气-液旋流分离器流动特性数值研究[J]. 石油学报(石油加工), 2024, 40(1): 193-204. |
| GENG Kun, SUN Zhiqian, LI Teng, et al. Numerical study of the flow characteristics in a cascade gas-liquid cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2024, 40(1): 193-204. | |
| [25] | 宋家恺, 孔令真, 陈家庆, 等. 脱液型管式气液分离器旋流分离段内液膜流动和分离特性[J]. 化工进展, 2024, 43(8): 4297-4306. |
| SONG Jiakai, KONG Lingzhen, CHEN Jiaqing . et al. Liquid film flow and separation characteristics in the swirl separation section of a tubular deliquidiser[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4297-4306. | |
| [26] | 刘海龙. 同井注采井下气液分离器结构优化设计及流场分析[D]. 大庆: 东北石油大学, 2022. |
| LIU Hailong. Structural optimization design and flow field analysis of downhole gas-liquid separator for injection-production in the single well[D]. Daqing: Northeast Petroleum University, 2022. | |
| [27] | 邢雷, 蒋明虎, 张勇, 等. 入口形式对旋流器内油滴聚结特性影响研究[J]. 高校化学工程学报, 2018, 32 (6): 1322-1331. |
| XING Lei, JIANG Minghu, ZHANG Yong, et al. Effects of inlet structure on oil droplet coalescence in hydrocyclone[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32 (6): 1322-1331. | |
| [28] | 邢雷, 苗春雨, 蒋明虎 等. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
| XING Lei, MIAO Chunyu, JIANG Minghu, et al. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone[J]. CIESC Journal, 2023, 74(8): 3394-3406. | |
| [29] | 邢雷, 关帅, 蒋明虎, 等. 高气液比井下气液旋流分离器结构设计与性能分析[J]. 化工学报, 2024, 75(3): 900-913. |
| XING Lei, GUAN Shuai, JIANG Minghu, et al. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio[J]. CIESC Journal, 2024, 75(3): 900-913. | |
| [30] | AZADI Mehdi, AZADI Mohsen, MOHEBBI Ali. A CFD study of the effect of cyclone size on its performance parameters[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 835-841. |
| [31] | 曾令辉. 空气柱对水力旋流器分级流场的影响及调控研究[D]. 赣州: 江西理工大学, 2023. |
| ZENG Linghui. Study on the influence and regulation of air column on the graded flow field of hydrocyclone[D]. Ganzhou: Jiangxi University of Science and Technology, 2023. | |
| [32] | 邢雷, 赵立新, 蔡萌. 旋流分离及同井注采技术[M]. 北京: 化学工业出版社, 2024. |
| XING Lei, ZHAO Lixin, CAI Meng. Cyclone separation and single-well injection-production technology[M]. Beijing: Chemical Industry Press, 2024. | |
| [33] | 杨娜, 钟凯, 秦术杰. 基于分式析因设计的燕尾榫节点抗弯性能研究[J]. 建筑科学与工程学报, 2018, 35(5): 32-38. |
| YANG Na, ZHONG Kai, QIN Shujie. Research on flexural behavior of dovetail mortise-tenon joint based on fractional factorial design[J]. Journal of Architecture and Civil Engineering, 2018, 35(5): 32-38. | |
| [34] | 方萍, 何延. 试验设计与统计[M]. 杭州: 浙江大学出版社, 2003. |
| FANG Ping, HE Yan. Experimental design and statistic[M]. Hangzhou: Zhejiang University Press, 2003. | |
| [35] | SREEDHARAN Anupriya, Siew-Teng ONG. Combination of Plackett Burman and response surface methodology experimental design to optimize malachite green dye removal from aqueous environment[J]. Chemical Data Collections, 2020, 25: 100317. |
| [36] | 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005. |
| LI Yunyan, HU Chuanrong. Experiment design and data processing[M]. Beijing: Chemical Industry Press, 2005. | |
| [37] | 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45. |
| LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface method in experimental design and optimization[J]. Experimental Research and Exploration, 2015, 34(8): 41-45. | |
| [38] | 郝拉娣, 于化东. 标准差与标准误[J]. 编辑学报, 2005, (2): 116-118. |
| HAO Ladi, YU Huadong. Standard deviation and standard error of arithmetic mean[J]. Acta Editologica, 2005, (2): 116-118. | |
| [39] | 魏松波, 刘琳, 郑兴升, 等. 新型螺旋式气液旋流分离器数值模拟研究[J]. 石油机械, 2024, 52(8): 132-140. |
| WEI Songbo, LIU Lin, ZHENG Xingsheng, et al. Numerical simulation and experimental verification of cylindrical-cone gas-liquid cyclone[J]. China Petroleum Machinery, 2024, 52(8): 132-140. | |
| [40] | 袁惠新, 方勇, 付双成, 等. 旋流器的微米级颗粒分级性能分析[J]. 化工进展, 2017, 36 (12): 4371-4377. |
| YUAN Huixin, FANG Yong, FU Shuangcheng, et al. Analysis of the classification performance of micron particles with hydrocyclones[J]. Chemical Industry and Engineering Progress, 2017, 36 (12): 4371-4377. | |
| [41] | 蒋明虎, 卢梦媚, 赵立新, 等. 分流比对内嵌小锥式固液旋流器性能的影响[J]. 化工机械, 2018, 45(2): 241-245, 250. |
| JIANG Minghu, LU Mengmei, ZHAO Lixin, et al. Influence of split ratio on the performance of solid-liquid cyclone with embedded cone structure[J]. Chemical Engineering & Machinery, 2018, 45(2): 241-245, 250. |
| [1] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [2] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [3] | GONG Chengcheng, ZHANG Libiao, HAN Weida. Analysis and optimization of refrigerant maldistribution in heat exchange tubes of dry evaporators for ultra-low temperature screw chiller units [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 38-50. |
| [4] | ZHANG Hongwu, HU Qihui, ZHAO Xuefeng, LI Yuxing, MENG Lan, ZHANG Lijun, ZHU Jianlu, WANG Wuchang. Research progress on leakage risk of onshore CO2 pipeline [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 462-477. |
| [5] | GU Jiajin, CHEN Caixia, XIA Zihong. Direct numerical simulation of the rising motion of multiple bubbles in a gas-liquid bubbling tower [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 51-57. |
| [6] | CUI Ruizhuo, LI Shuangxi, LI Fangjun, ZHANG Tianhao, JIA Xiangji. Friction wear and temperature deformation field analysis of mechanical seal for dry friction kettle with SiC-graphite matching pair [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 58-73. |
| [7] | MA Runmei, HUANG Lele, LI Shuangxi, QI Zhicheng, YAN Xinxin, ZHAO Xinni. Analysis and experimental study on sealing performance of nozzle seal under high temperature and high pressure vibration conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 8-18. |
| [8] | XU Haitian, XU Yanying, ZHAI Ming. Boiling heat transfer simulation using lattice Boltzmann model with flow velocity boundary conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 84-91. |
| [9] | ZHOU Jinghao, ZHANG Chaoyang, HU Haoxing, WANG Siming, LIU Jingyuan, WEI Guanghua. Numerical analysis of gas transfer in microporous layer of PEMFC based on lattice Boltzmann method [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4898-4907. |
| [10] | WANG Jilong, HE Lei, SU Yi, TANG Zhaofan. Numerical simulation on natural gas flameless combustion(MILD) in tail gas incinerator furnaces [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4928-4936. |
| [11] | DUAN Xianzhe, BI Wenting, LI Nan, DOU Jiale, SHAO Bingqing, WANG Jiawei, WU Peng, HUANG Huan, TANG Zhenping. Numerical simulation for disposal of high-level radioactive wastes (HLWs): Mechanisms and influencing factors of radionuclide migration [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5391-5405. |
| [12] | ZHANG Guanghui, JIANG Jinxu, HUANG Lei, CHEN Shixiang, MA Tiantian. Influencing factors analysis and prediction for oxygen-enriched combustion characteristics of municipal sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5460-5470. |
| [13] | ZHAI Yuhang, CONG Lixin, HAN Bing, WANG Qilin, ZOU Huichuan. Formation mechanism of large-scale hydrogen cloud deflagration pressure waves and determination of disaster effects [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4709-4719. |
| [14] | CHEN Sheng, LIU Zhongwei, LYU Rongrong, MIAO Chao, ZHOU Siya, JIANG Jingjing, CHEN Rui, HUANG Ganghua, HE Meng, ZHU Liyun. Simulation of multi-field interactive damage caused by acid gas condensation erosion in high-sulfur natural gas desulfurization purification units [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4754-4771. |
| [15] | CHEN Songsong, BAO Aili, HUO Feng, HOU Yahui, CUI Gaijing, ZHANG Junping. Application of artificial intelligence (AI) in the design of complex chemical engineering processes: Status, challenges and prospects [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4821-4837. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |