Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5991-6003.DOI: 10.16085/j.issn.1000-6613.2024-1443
• Resources and environmental engineering • Previous Articles
YANG Xiumin1(
), HU Chengqiang1, WANG Junlian1(
), LI Yong2, LIU Xinyu3
Received:2024-09-03
Revised:2024-11-18
Online:2025-11-10
Published:2025-10-25
Contact:
WANG Junlian
杨秀敏1(
), 胡成强1, 王俊莲1(
), 李勇2, 刘新宇3
通讯作者:
王俊莲
作者简介:杨秀敏(2000—),女,硕士研究生,研究方向为锆铪萃取分离。E-mail:xiuminyang2022@163.com。
基金资助:CLC Number:
YANG Xiumin, HU Chengqiang, WANG Junlian, LI Yong, LIU Xinyu. Preparation, structures and performance of extraction resins based on zirconium and hafnium separation with extraction chromatography[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5991-6003.
杨秀敏, 胡成强, 王俊莲, 李勇, 刘新宇. 基于萃取色层法分离锆铪的萃淋树脂制备、结构与性能[J]. 化工进展, 2025, 44(10): 5991-6003.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1443
| 树脂 | 官能团 | 基底 | 制备方法 | 体系最佳条件 | 选择性 | Qmax(Hf)/mg·g-1 | Qmax(Zr)/mg·g-1 | 分离系数β | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| SIR-MIBK/HPD100 | ![]() | HPD100 | 浸渍法 | [NH4SCN]=0.5mol/L,[HCl]=1.1mol/L | Hf | 14.33 | 473.80 | — | [ |
| SIR-TBP/PEG-coated-SPIONs | ![]() | PEG-coated-γ-Fe2O3 | 浸渍法 | [HNO3]=4.0mol/L | Zr | — | — | βZr/Hf=5 | [ |
| [HCl]=4.0mol/L | Hf | — | — | βHf/Zr=1.4 | |||||
| UTEVA | ![]() | — | 浸渍法 | [HCl]=5.6mol/L | Zr | — | — | βZr/Hf>9.4 | [ |
| [HNO3]=4.9mol/L | Zr | — | — | βZr/Hf=10±1 | |||||
| [H2SO4]=12.1mol/L | Hf | — | — | βHf/Zr=2.0±0.2 | |||||
| MPFSG | ![]() | SiO2 | 接枝法 | HNO3, pH=1.8 | Zr | 11.8 | 12.3 | βZr/Hf=1.1 | [ |
| BPFSG | ![]() | SiO2 | 接枝法 | HNO3, pH=1.8 | Zr | 15 | 16.7 | βZr/Hf=1.2 | [ |
| AAPPFSG | ![]() | SiO2 | 接枝法 | HNO3, pH=1.8 | Zr | 24 | 29 | βZr/Hf=11.0 | [ |
| SGN18 | ![]() | SiO2 | 接枝法 | HCl, pH=1.5 | Zr | 3.3 | 38.3 | βZr/Hf=5.72 | [ |
| SIR-Calix[ | ![]() | SiO2-P | 浸渍法 | [HCl]=1mol/L | Zr | — | — | βZr/Hf=1.4 | [ |
| SIR-TODGA/SiO2-P | ![]() | SiO2-P | 浸渍法 | [HCl]=1.5mol/L | Zr | 75.85 | 44.24 | βZr/Hf=5.2 | [ |
| R-PO4H2 | ![]() | GMA/DVB 修饰的 Fe3O4 | 接枝法 | HCl, pH=2.5 | Zr | 42.88 | 85.75 | βZr/Hf=6 | [ |
| TVEX-P507 | ![]() | 苯乙烯-二乙烯基共聚物 | 原位聚合法 | [H2SO4]=0.08mol/L | Hf | 0.21 | — | βHf/Zr=6.81 | [ |
| SiO2-POOH | ![]() | SiO2 | 接枝法 | [H2SO4]=0.5mol/L | Hf | 31.62 | — | βHf/Zr =4.69 | [ |
| Mer-CON-POOH-HYY2 | ![]() | 氯球 | 接枝法 | [H2SO4]=0.3mol/L | Hf | 13.16 | — | βHf/Zr=4.33 | [ |
| Mer-CON-POOH-272 | ![]() | 氯球 | 接枝法 | [H2SO4]=0.3mol/L | Hf | 11.11 | — | βHf/Zr=2.96 | |
| PS-G1.0-MSNs | ![]() | SiO2 | 接枝法 | HNO3, pH=0.5 | Hf | 5.36 | 25.7 | βHf/Zr=2.0 | [ |
| Marathon C | —SO3H | 苯乙烯-二乙烯基共聚物 | 接枝法 | H2SO4, pH=2.5 | Hf | 24.92 | 103.74 | βHf/Zr=2.63 | [ |
| Diphonix | —PO4H2、—SO3H、—COOH | 苯乙烯-二乙烯基共聚物 | 接枝法 | [H2SO4]=1mol/L | Hf | — | — | βHf/Zr=1.47 | [ |
| Purolite S-957 | —PO4H2、—SO3H | 苯乙烯-二乙烯基共聚物 | 接枝法 | [H2SO4]=0.5mol/L | Hf | — | — | βHf/Zr=2.8 | [ |
| SIR-BTP/ SiO2-P | ![]() | SiO2-P | 浸渍法 | [HCl]=1mol/L | Hf | — | — | βHf/Zr=1.1 | [ |
| Reillex PVP | ![]() | 苯乙烯-二乙烯基共聚物 | 接枝法 | [HCl]=9.5mol/L | Zr | — | — | βZr/Hf=10.4 | [ |
| TEVA | ![]() | — | 浸渍法 | [HCl]=8.4mol/L | Zr | — | — | βZr/Hf=18±8 | [ |
| Amberjet 4200 Cl | ![]() | 苯乙烯-二乙烯基共聚物 | 接枝法 | [HCl]=9.5mol/L | Zr | — | 86 | βZr/Hf=11.4 | [ |
| Reillex HPQ | ![]() | 聚乙烯基吡咯烷酮-二乙烯基苯 | — | [HCl]=9.5mol/L | Zr | — | — | βZr/Hf=9.7 | [ |
| 树脂 | 官能团 | 基底 | 制备方法 | 体系最佳条件 | 选择性 | Qmax(Hf)/mg·g-1 | Qmax(Zr)/mg·g-1 | 分离系数β | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| SIR-MIBK/HPD100 | ![]() | HPD100 | 浸渍法 | [NH4SCN]=0.5mol/L,[HCl]=1.1mol/L | Hf | 14.33 | 473.80 | — | [ |
| SIR-TBP/PEG-coated-SPIONs | ![]() | PEG-coated-γ-Fe2O3 | 浸渍法 | [HNO3]=4.0mol/L | Zr | — | — | βZr/Hf=5 | [ |
| [HCl]=4.0mol/L | Hf | — | — | βHf/Zr=1.4 | |||||
| UTEVA | ![]() | — | 浸渍法 | [HCl]=5.6mol/L | Zr | — | — | βZr/Hf>9.4 | [ |
| [HNO3]=4.9mol/L | Zr | — | — | βZr/Hf=10±1 | |||||
| [H2SO4]=12.1mol/L | Hf | — | — | βHf/Zr=2.0±0.2 | |||||
| MPFSG | ![]() | SiO2 | 接枝法 | HNO3, pH=1.8 | Zr | 11.8 | 12.3 | βZr/Hf=1.1 | [ |
| BPFSG | ![]() | SiO2 | 接枝法 | HNO3, pH=1.8 | Zr | 15 | 16.7 | βZr/Hf=1.2 | [ |
| AAPPFSG | ![]() | SiO2 | 接枝法 | HNO3, pH=1.8 | Zr | 24 | 29 | βZr/Hf=11.0 | [ |
| SGN18 | ![]() | SiO2 | 接枝法 | HCl, pH=1.5 | Zr | 3.3 | 38.3 | βZr/Hf=5.72 | [ |
| SIR-Calix[ | ![]() | SiO2-P | 浸渍法 | [HCl]=1mol/L | Zr | — | — | βZr/Hf=1.4 | [ |
| SIR-TODGA/SiO2-P | ![]() | SiO2-P | 浸渍法 | [HCl]=1.5mol/L | Zr | 75.85 | 44.24 | βZr/Hf=5.2 | [ |
| R-PO4H2 | ![]() | GMA/DVB 修饰的 Fe3O4 | 接枝法 | HCl, pH=2.5 | Zr | 42.88 | 85.75 | βZr/Hf=6 | [ |
| TVEX-P507 | ![]() | 苯乙烯-二乙烯基共聚物 | 原位聚合法 | [H2SO4]=0.08mol/L | Hf | 0.21 | — | βHf/Zr=6.81 | [ |
| SiO2-POOH | ![]() | SiO2 | 接枝法 | [H2SO4]=0.5mol/L | Hf | 31.62 | — | βHf/Zr =4.69 | [ |
| Mer-CON-POOH-HYY2 | ![]() | 氯球 | 接枝法 | [H2SO4]=0.3mol/L | Hf | 13.16 | — | βHf/Zr=4.33 | [ |
| Mer-CON-POOH-272 | ![]() | 氯球 | 接枝法 | [H2SO4]=0.3mol/L | Hf | 11.11 | — | βHf/Zr=2.96 | |
| PS-G1.0-MSNs | ![]() | SiO2 | 接枝法 | HNO3, pH=0.5 | Hf | 5.36 | 25.7 | βHf/Zr=2.0 | [ |
| Marathon C | —SO3H | 苯乙烯-二乙烯基共聚物 | 接枝法 | H2SO4, pH=2.5 | Hf | 24.92 | 103.74 | βHf/Zr=2.63 | [ |
| Diphonix | —PO4H2、—SO3H、—COOH | 苯乙烯-二乙烯基共聚物 | 接枝法 | [H2SO4]=1mol/L | Hf | — | — | βHf/Zr=1.47 | [ |
| Purolite S-957 | —PO4H2、—SO3H | 苯乙烯-二乙烯基共聚物 | 接枝法 | [H2SO4]=0.5mol/L | Hf | — | — | βHf/Zr=2.8 | [ |
| SIR-BTP/ SiO2-P | ![]() | SiO2-P | 浸渍法 | [HCl]=1mol/L | Hf | — | — | βHf/Zr=1.1 | [ |
| Reillex PVP | ![]() | 苯乙烯-二乙烯基共聚物 | 接枝法 | [HCl]=9.5mol/L | Zr | — | — | βZr/Hf=10.4 | [ |
| TEVA | ![]() | — | 浸渍法 | [HCl]=8.4mol/L | Zr | — | — | βZr/Hf=18±8 | [ |
| Amberjet 4200 Cl | ![]() | 苯乙烯-二乙烯基共聚物 | 接枝法 | [HCl]=9.5mol/L | Zr | — | 86 | βZr/Hf=11.4 | [ |
| Reillex HPQ | ![]() | 聚乙烯基吡咯烷酮-二乙烯基苯 | — | [HCl]=9.5mol/L | Zr | — | — | βZr/Hf=9.7 | [ |
| [1] | SHATALOV V V, NIKONOV V I, KOTSAR M L. Prospects for zirconium and hafnium supplies for nuclear power in Russia up to 2030[J]. Atomic Energy, 2008, 105(4): 242-247. |
| [2] | XU L, XIAO Y, VAN SANDWIJK A, et al. Production of nuclear grade zirconium: A review[J]. Journal of Nuclear Materials, 2015, 466: 21-28. |
| [3] | 王俊莲, 付家帅, 许文, 等. 基于锆铪溶剂萃取分离的萃取剂性能[J]. 稀有金属, 2020, 44(6): 658-667. |
| WANG Junlian, FU Jiashuai, XU Wen, et al. Performance of various extractants for zirconium and hafnium separation by solvent extraction[J]. Chinese Journal of Rare Metals, 2020, 44(6): 658-667. | |
| [4] | XU L, XIAO Y, VAN SANDWIJK A, et al. Separation of zirconium and hafnium: A review[C]//Energy Materials 2014. Cham: Springer International Publishing, 2014: 451-457. |
| [5] | 郭宁, 俞中华. 钽铌锆铪行业“十三五”前瞻[J]. 中国有色金属, 2016(11): 48-49. |
| GUO Ning, YU Zhonghua. Prospects of the tantalum, niobium, zirconium and hafnium industries during the period of the 13th Five-Years Plan[J]. China Nonferrous Metals, 2016(11): 48-49. | |
| [6] | NISELSON Lev A, EGOROV Egor A, CHUVILINA Elena L, et al. Solid-liquid and liquid-vapor equilibria in the Zr(Hf)Cl4-KalCl4 systems: A basis for the extractive distillation separation of zirconium and hafnium tetrachlorides[J]. Journal of Chemical & Engineering Data, 2009, 54(3): 726-729. |
| [7] | 徐亮. 熔盐萃取锆铪分离和锆在熔盐中的电化学行为[D]. 沈阳: 东北大学, 2017. |
| XU Liang. Separation of zirconium and hafnium with molten salt extraction and electrochemical behavior of zirconium in molten salt[D]. Shenyang: Northeastern University, 2017. | |
| [8] | 柴延全. 熔盐萃取法分离锆铪的研究[D]. 马鞍山: 安徽工业大学, 2017. |
| CHAI Yanquan. Research on the separation of zirconium and hafnium by molten salt extraction[D]. Ma’anshan: Anhui University of Technology, 2017. | |
| [9] | BRANKEN D J, LACHMANN G, KRIEG H M, et al. A density-functional theory approach to the separation of K2ZrF6 and K2HfF6 via fractional crystallization[J]. International Journal of Quantum Chemistry, 2011, 111(3): 682-693. |
| [10] | WANG Junlian, LIU Hui, ZHAO Hongru, et al. Selective extraction of Hf over Zr by a novel extractant (n-octyl)(2,4,4′-trimethylpentyl)phosphinic acid (INET-1) from sulfuric acid media[J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(7): 2473-2485. |
| [11] | ZHAO Hongru, HU Chengqiang, SUI Na, et al. Evaluation of novel solvent extraction systems for Zr/Hf separation with MIBK homologues[J]. Arabian Journal of Chemistry, 2024, 17(1): 105425. |
| [12] | TANG Tingting, YANG Fan, XIE Meiying, et al. Highly efficient separation and enrichment of hafnium from zirconium oxychloride solutions by advanced ion-imprinted membrane separation technology[J]. Journal of Membrane Science, 2023, 668: 121237. |
| [13] | ALFONSO M C, BENNETT M E, FOLDEN C M. Extraction chromatography of the Rf homologs, Zr and Hf, using TEVA and UTEVA resins in HCl, HNO3, and H2SO4 media[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(2): 1529-1536. |
| [14] | XU Zhigao, WU Yanke, ZHANG Jiandong, et al. Equilibrium and kinetic data of adsorption and separation for zirconium and hafnium onto MIBK extraction resin[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1527-1533. |
| [15] | 王俊莲, 孙春宝, 徐盛明. 基于稀土分离的萃淋树脂制备与应用研究[J]. 中国稀土学报, 2015, 33(2): 129-145. |
| WANG Junlian, SUN Chunbao, XU Shengming. Advances in preparation and application of solid-liquid extraction resins based on rare earth separation[J]. Journal of the Chinese Society of Rare Earths, 2015, 33(2): 129-145. | |
| [16] | FAN Jinlong, DUAN Li, WANG Yufeng, et al. Assembly of a polymer-based extraction resin and separation of minor actinides[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125473. |
| [17] | HUANG Weini, LIN Zian. Recent advances in sample pretreatment techniques for chromatographic analysis[J]. Se Pu=Chinese Journal of Chromatography, 2021, 39(1): 1-3. |
| [18] | Semih ÖTLES, KARTAL Canan. Solid-phase extraction (SPE): Principles and applications in food samples[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2016, 15(1): 5-15. |
| [19] | 李华昌, 周春山, 符斌. 萃淋树脂技术及其在湿法冶金中的应用[J]. 有色金属, 2001(1): 70-73. |
| LI Huachang, ZHOU Chunshan, FU Bin. Extraction resin technology and its application in wet metallurgy[J]. Nonferrous Metals, 2001(1): 70-73. | |
| [20] | 熊洁, 许云书, 黄玮. 偕胺肟基螯合吸附分离材料研究进展[J]. 材料导报, 2006, 20(7): 102-104, 108. |
| XIONG Jie, XU Yunshu, HUANG Wei. Recent development of absorption and separation materials with amidoxime group[J]. Materials Review, 2006, 20(7): 102-104, 108. | |
| [21] | Nadia A ALI, ABD-ELNAIEM Alaa M, HUSSEIN Seenaa I, et al. Thermal and mechanical properties of epoxy resin functionalized copper and graphene hybrids using in situ polymerization method[J]. Current Nanoscience, 2021, 17(3): 494-502. |
| [22] | LANASA Jacob A, TORRES Vincent M, HICKEY Robert J. In situ polymerization and polymer grafting to stabilize polymer-functionalized nanoparticles in polymer matrices[J]. Journal of Applied Physics,2020, 127(13): 134701. |
| [23] | BORAI Emad, KARESOJA Mikko, HARJULA Risto. Separation of cobalt from europium with mesoporous hybrid silica-poly(styrene) impregnated chelating resin[J]. Mineral Processing and Extractive Metallurgy Review, 2013, 34(1): 57-72. |
| [24] | ZHANG Xiaofeng, Zihao OU, XIANG Jinxin. Fabrication of magnetic activated carbon from waste macroporous resin via Fenton’s reagent impregnation[J]. Journal of Porous Materials, 2021, 28(1): 165-170. |
| [25] | THEBAULT Marion, KUTUZOVA Larysa, JURY Sandra, et al. Effect of phenolation, lignin-type and degree of substitution on the properties of lignin-modified phenol-formaldehyde impregnation resins: Molecular weight distribution, wetting behavior, rheological properties and thermal curing profiles[J]. Journal of Renewable Materials, 2020, 8(6): 603-630. |
| [26] | ZHANG Zhen, ZHOU Yuedi, ZHOU Jingbo, et al. Synthesis of TOPO/XAD-16 impregnated resins and effective adsorption of uranium (Ⅵ) in acidic solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(4): 1149-1162. |
| [27] | MATSUNAGA Hideyuki, ISMAIL Adel ALI, WAKUI Yoshito, et al. Extraction of rare earth elements with 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate impregnated resins having different morphology and reagent content[J]. Reactive and Functional Polymers, 2001, 49(3): 189-195. |
| [28] | GENG Shiyu, WEI Jiayuan, Yvonne AITOMÄKI, et al. Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites[J]. Nanoscale, 2018, 10(25): 11797-11807. |
| [29] | 柏雨婷, 严岑琪, 李祯, 等. 采用原位成孔法制备热闭孔特性的高强度聚酰亚胺多孔薄膜[J]. 物理化学学报, 2024, 40(9): 83-89. |
| BAI Yuting, YAN Cenqi, LI Zhen, et al. Preparation of high strength polyimide porous films with thermal closed pore characteristics by in situ porosity method [J]. Journal of Physical Chemistry, 2024, 40(9): 83-89. | |
| [30] | WANG Jinhui, YANG Shaowei, MA Fubin, et al. RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: A high-performance hydrogen evolution reaction catalyst[J]. Tungsten, 2024, 6(1): 114-123. |
| [31] | 郎倩, 竹筱歆, 张丽新, 等. 原位聚合法制备可降解纤维基地膜及机理分析[J]. 农业工程学报, 2023, 39(15): 249-258. |
| LANG Qian, ZHU Xiaoxin, ZHANG Lixin, et al. Fabrication and mechanism analysis of degradable fiber membrane by in situ polymerization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(15): 249-258. | |
| [32] | LIU Yisi, CHEN Zhicheng, LI Zongxu, et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery[J]. Nano Energy, 2022, 99: 107325. |
| [33] | FU Yihan, PENG Yuanyou, ZHAO Lei, et al. Vanadium nitride quantum dots@carbon skeleton anode material synthesized via in situ oxidation initiation strategy[J]. Tungsten, 2024, 6(3): 561-573. |
| [34] | KAUCZOR H W, MEYER A. Structure and properties of levextrel resins[J]. Hydrometallurgy, 1978, 3(1): 65-73. |
| [35] | TAMANG Aditya Moktan, SINGH Nitesh, CHANDRAKER Sandip Kumar, et al. Solvent impregnated resin a potential alternative material for separation dyes, metal and phenolic compounds: A review[J]. Current Research in Green and Sustainable Chemistry, 2022, 5: 100232. |
| [36] | 吴明. DIBK-TBP体系萃取分离锆和铪的动力学研究[D]. 武汉: 武汉工程大学, 2012. |
| WU Ming. Kinetic study on extraction and separation of zirconium and hafnium by DIBK-TBP system[D]. Wuhan: Wuhan Institute of Technology, 2012. | |
| [37] | 林振汉. 用甲基异丁基酮萃取分离锆铪的工艺评价[J]. 稀有金属快报, 2007, 26(1): 93-96. |
| LIN Zhenhan. Extraction separation of zirconium and hafnium with methyl isobutyl ketone (MIBK)[J]. 2007, 26(1): 93-96. | |
| [38] | 徐志高, 王力军, 池汝安, 等. DIBK溶剂萃取法分离锆铪[J]. 有色金属(冶炼部分), 2012(3): 35-38, 42. |
| XU Zhigao, WANG Lijun, CHI Ruan, et al. Solvent extraction and separation of hafnium from zirconium with DIBK[J]. Nonferrous Metals (Extractive Metallurgy), 2012(3): 35-38, 42. | |
| [39] | 林振汉. 用TBP萃取分离和的工艺研究[J]. 稀有金属快报, 2004, 23(11): 21-25. |
| LIN Zhenhan. Study of the technological process for extractive separation of zirconium-hafnium with tributyl phosphate[J]. Rare Metals Letters, 2004, 23(11): 21-25. | |
| [40] | ALIAKBARI Mohsen, SABERYAN Kamal, NOAPARAST Mohammad, et al. Separation of hafnium and zirconium using TBP modified ferromagnetic nanoparticles: Effects of acid and metals concentrations[J]. Hydrometallurgy, 2014, 146: 72-75. |
| [41] | Amrita DAS, CHANDRAKUMAR K R S, PAUL Bhaskar, et al. Enhanced adsorption and separation of zirconium and hafnium under mild conditions by phosphoric acid based ligand functionalized silica gels: Insights from experimental and theoretical investigations[J]. Separation and Purification Technology, 2020, 239: 116518. |
| [42] | JAL P K, PATEL S, MISHRA B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions[J]. Talanta, 2004, 62(5): 1005-1028. |
| [43] | SMITH Jacob B, KERR Stewart H, WHITE Peter S, et al. Thermodynamic studies of cation-macrocycle interactions in nickel pincer-crown ether complexes enable switchable ligation[J]. Organometallics, 2017, 36(16): 3094-3103. |
| [44] | YIN Xiangbiao, WEI Yuezhou, ZU Jianhua. Adsorption behavior of Zr(Ⅳ) and Hf(Ⅳ) on a silica-based macroporous TODGA adsorbent[J]. Nuclear Science and Techniques, 2013, 24(4): 11-18. |
| [45] | QIN Wei, XU Shengming, XU Gang, et al. Preparation of silica gel bound crown ether and its extraction performance towards zirconium and hafnium[J]. Chemical Engineering Journal, 2013, 225: 528-534. |
| [46] | KUMARI Shikha, CARMONA Angelica V, TIWARI Amit K, et al. Amide bond bioisosteres: Strategies, synthesis, and successes[J]. Journal of Medicinal Chemistry, 2020, 63(21): 12290-12358. |
| [47] | Sandra AGUDO-ÁLVAREZ, DÍAZ-MÍNGUEZ Sandra S, Raúl BENITO-ARENAS. The amide group and its preparation methods by acid-amine coupling reactions: An overview[J]. Pure and Applied Chemistry, 2024, 96(5): 691-707. |
| [48] | WANG Ling yun, LEE Man Seung. A review on the aqueous chemistry of Zr(Ⅳ) and Hf(Ⅳ) and their separation by solvent extraction[J]. Journal of Industrial and Engineering Chemistry, 2016, 39: 1-9. |
| [49] | BANDA Raju, LEE Man Seung. Solvent extraction for the separation of Zr and Hf from aqueous solutions[J]. Separation & Purification Reviews, 2015, 44(3): 199-215. |
| [50] | DONIA A M, ATIA A A, DAHER A M, et al. Extraction and separation of zirconium(Ⅳ) and hafnium(Ⅳ) from chloride media using magnetic resin with phosphoric acid functionality[J]. Journal of Dispersion Science and Technology, 2011, 32(2): 193-202. |
| [51] | 周新木, 董雪平, 陈慧勤, 等. 改进的P507在H2SO4体系中对锆铪的静态吸附实验[J]. 有色金属(冶炼部分), 2009(4): 26-29. |
| ZHOU Xinmu, DONG Xueping, CHEN Huiqin, et al. Captive adsorption of zirconium and hafnium in H2SO4 with improved P507[J]. Nonferrous Metals (Extractive Metallurgy), 2009(4): 26-29. | |
| [52] | WANG Junlian, LIU Hui, XU Wen, et al. Selective extraction of hafnium over zirconium with dialkylphosphinic acids from H2SO4 media[J]. Journal of the Brazilian Chemical Society, 2023: 34(7): 1003-1012. |
| [53] | BANDA Raju, MIN Soo Hwan, LEE Man Seung. Selective extraction of Hf(Ⅳ) over Zr(Ⅳ) from aqueous H2SO4 solutions by solvent extraction with acidic organophosphorous based extractants[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(11): 1712-1719. |
| [54] | 刘辉, 王俊莲, 徐国栋, 等. 二烷基次膦酸改性的SiO2基萃淋树脂的制备及吸附分离锆铪的性能[J]. 离子交换与吸附, 2023, 39(1): 1-16. |
| LIU Hui, WANG Junlian, XU Guodong, et al. Dialkylphosphinic acid modified SiO2-based extraction resin: Preparation and its adsorption and separation performance for zirconium and hafnium[J]. Ion Exchange and Adsorption, 2023, 39(1): 1-16. | |
| [55] | HU Chengqiang, ZHAO Hongru, SUN Ruiyi, et al. Novel dialkylphosphinic acid modified Merrifield resins: Synthesis, characterization, and their adsorption and separation behaviors for zirconium and hafnium[J]. Separation and Purification Technology, 2025, 353: 128539. |
| [56] | WANG Junlian, CHEN Guang, XU Shengming, et al. Synthesis of novel nonsymmetric dialkylphosphinic acid extractants and studies on their extraction-separation performance for heavy rare earths[J]. Hydrometallurgy, 2015, 154: 129-136. |
| [57] | WANG Junlian, XU Shengming, LI Linyan, et al. Synthesis of organic phosphinic acids and studies on the relationship between their structure and extraction-separation performance of heavy rare earths from HNO3 solutions[J]. Hydrometallurgy, 2013, 137: 108-114. |
| [58] | QIN Wei, XU Kaixuan, WANG Junwei, et al. Phosphorous-functionalized PAMAM dendrimers supported on mesoporous silica for Zr(Ⅳ) and Hf(Ⅳ) separation[J]. RSC Advances, 2021, 11(55): 34754-34765. |
| [59] | FELIPE Elaine C B, LADEIRA Ana Claudia Q. Separation of zirconium from hafnium by ion exchange[J]. Separation Science and Technology, 2018, 53(2): 330-336. |
| [60] | SMOLIK M, JAKÓBIK-KOLON A, PORAŃSKI M. Separation of zirconium and hafnium using Diphonix® chelating ion-exchange resin[J]. Hydrometallurgy, 2009, 95(3/4): 350-353. |
| [61] | SMOLIK Marek, Łukasz SIEPIETOWSKI, Agata JAKÓBIK-KOLON. The effects of concentrations of zirconium(Ⅳ) sulphate and sulphuric acid on sorption of zirconium(Ⅳ) and hafnium(Ⅳ) on purolite S-957 resin. adsorption isotherms of zirconium(Ⅳ) and hafnium(Ⅳ) ions[J]. Solvent Extraction and Ion Exchange, 2014, 32(4): 437-446. |
| [62] | KANG Jingu, KIM Yung-Uk, Sung-Ho JOO, et al. Behavior of extraction, stripping, and separation possibilities of rhenium and molybdenum from molybdenite roasting dust leaching solution using amine based extractant tri-otyl-amine (TOA)[J]. Materials Transactions, 2013, 54(7): 1209-1212. |
| [63] | DU PREEZ Jan G H. Recent advances in amines as separating agents for metal ions[J]. Solvent Extraction and Ion Exchange, 2000, 18(4): 679-701. |
| [64] | TEZCAN Fatma, DONAT Ramazan. Single and selective transport of Zr(Ⅳ) ions with trioctyl amine dissolved in kerosene using a multidropped liquid membrane technique[J]. Turkish Journal of Chemistry, 2022, 46(5): 1594-1606. |
| [65] | KRAMER Jurjen, DRIESSEN Willem L, KOCH Klaus R, et al. Highly selective extraction of platinum group metals with silica-based (poly)amine ion exchangers applied to industrial metal refinery effluents[J]. Hydrometallurgy, 2002, 64(1): 59-68. |
| [66] | MAITY Tarun, AGGARWAL Abhishek, DASGUPTA Subhadeep, et al. Efficient removal of uranyl ions using PAMAM dendrimer: Simulation and experiment[J]. Langmuir, 2023, 39(19): 6794-6802. |
| [67] | PORIEL L, PELLET-ROSTAING S, LAMOTTE V, et al. Zirconium and hafnium separation, part 2. solid/liquid extraction in hydrochloric acid aqueous solution with anion exchange resins[J]. Separation Science and Technology, 2006, 41(12): 2711-2722. |
| [68] | FAVRE-RÉGUILLON A, FIATY K, LAURENT P, et al. Solid/liquid extraction of zirconium and hafnium in hydrochloric acid aqueous solution with anion exchange ResinKinetic study and equilibrium analyses[J]. Industrial & Engineering Chemistry Research, 2007, 46(4): 1286-1291. |
| [69] | PEARSON Ralph G. Absolute electronegativity and hardness: Application to inorganic chemistry[J]. Inorganic Chemistry, 1988, 27(4): 734-740. |
| [1] | FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017. |
| [2] | ZHANG Bo, MA Jun, ZHANG Weilong, JIA Shichuan, ZHANG Zhifei, DING Yu, PAN Youhua, WANG Junyu, ZHANG Lanhe. Preparation of α-ZrP/PDMS superhydrophobic anti-corrosion coating and corrosion resistance performance [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5130-5139. |
| [3] | HONG Kai, FAN Huan, TIAN Jia, ZHANG Xingfei. Treatment of copper-arsenic polymetallic acidic wastewater by sulfide precipitation: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5301-5314. |
| [4] | DU Xuan, WANG Zhanhong, ZHENG Bin, XU Wei, WANG Shuo, SHI Peng, GAO Guo. Progress on separation of cobalt-iron acid leaching solution and battery grade iron phosphate recovery technology [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5327-5338. |
| [5] | WANG Xiaoguang, DONG Qing, LANG Wenli, HONG Xiangxin, HUANG Zhenxiang, TAN Fengyu, LEI Yizhu, YU Ziyi. Progress on emission reduction and resource utilization of ultra-low concentration methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5363-5376. |
| [6] | YANG Zhenglu, YANG Lifeng, LU Xiaofei, SUO Xian, ZHANG Anyun, CUI Xili, XING Huabin. Advances in machine learning accelerating the screening and discovery of porous adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4288-4301. |
| [7] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [8] | GAO Yan, LI Yongshuai, LI Gaoyang, PAN Hui, LING Hao. Dynamic control for Agrawal divided-wall column [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4594-4605. |
| [9] | WANG Guochao, DING Huidian, SHI Li, LI Qiang, XIA Tao, YUAN Yang. Temperature inferential control of compound distillation sequences [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4720-4731. |
| [10] | TANG Xuan, BAI Xiaowei, ZHANG Feifei, LI Jinping, YANG Jiangfeng. Research progress on zeolite for CO2-N2-CH4 sieving separation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3938-3949. |
| [11] | CHEN Qian, TONG Kun, XIE Jiacai, SHAO Zhiguo, NIE Fan, LI Chentao. Research progress on the treatment technology of polymer-containing oil sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4158-4168. |
| [12] | LI Peiyi, SUN Bolong, LIU Ruiyan, ZHOU Xinyao, LIU Ruilin, HU Yuanyuan, XU Gongtao, LI Xinping. Preparation of sodium alginate/titanium dioxide composite porous material and its application in oil-water separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3053-3061. |
| [13] | FU Jiang, SUN Jiaoxia, FU Junjie, ZHU Min, SONG Pinxue, ZHOU Yining, FAN Jianxin. Self-cleaning effect and oil-water separation performance of hydrophobic modified polyester fiber fabric [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3121-3131. |
| [14] | WANG Heng, LU Chunxi. Structural optimization and operational performance analysis of cyclone separators in a 3.6Mt/a catalytic cracking unit [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3238-3246. |
| [15] | ZHANG Lei, ZHANG Xinru, WANG Yonghong, LI Jinping, LIU Chunbo. Research progress of two-dimensional nanomaterial-based mixed matrix membranes in organic pervaporation separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3324-3335. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |