Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1520-1532.DOI: 10.16085/j.issn.1000-6613.2024-0388
• Materials science and technology • Previous Articles Next Articles
ZHEN Wenchao(
), HAN Wenjia, LU Chengshuai, RONG Xuhui, CHEN Luzheng, LOU Jiang(
)
Received:2024-03-08
Revised:2024-04-18
Online:2025-04-15
Published:2025-03-25
Contact:
LOU Jiang
甄文超(
), 韩文佳, 卢成帅, 戎旭辉, 陈鲁正, 娄江(
)
通讯作者:
娄江
作者简介:甄文超(1999—),男,硕士研究生,研究方向为生物基功能材料。E-mail: wenchaozhen99@163.com。
基金资助:CLC Number:
ZHEN Wenchao, HAN Wenjia, LU Chengshuai, RONG Xuhui, CHEN Luzheng, LOU Jiang. Research progress of polyacrylate-based flexible sensors[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1520-1532.
甄文超, 韩文佳, 卢成帅, 戎旭辉, 陈鲁正, 娄江. 聚丙烯酸酯基柔性传感器的研究进展[J]. 化工进展, 2025, 44(3): 1520-1532.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0388
| 导电聚合物 | 优点 | 缺点 | 应用领域 |
|---|---|---|---|
| 聚(3,4-乙二氧基噻吩)(PEDOT) | 高导电性、良好的化学稳定性和 出色的机械性能,较好的透光性和加工性能 | 制备成本较高,其在水溶液中的稳定性较差,导电性能可能受到掺杂剂种类和 浓度的影响 | 光电器件、透明电极和柔性电子等领域 |
| 聚吡啶 (polypyridine) | 易成型、质量轻、柔软、耐腐蚀、低密度、高弹性、优良的加工性能、可选择的电导率范围宽、结构易变 和半导体的特性、价格便宜等 | 聚吡啶的合成过程相对复杂,需要精细的控制条件和专业的设备,这增加了传感器的制造成本。在高温、高湿等环境其 性能可能会受到影响 | 在电子器件、传感器、催化剂和 生物医药等领域具有广泛的应用前景 |
| 聚吡咯 (polypyrrole) | 较高的导电性、良好的环境稳定性和易于加工成型的特性,生物相容性和生物活性 | 制备过程中通常需要使用有机溶剂, 可能对环境造成污染,导电性可能受到 温度、湿度等环境因素的影响 | 生物医学领域,如生物传感器和 药物输送系统 |
| 导电聚合物 | 优点 | 缺点 | 应用领域 |
|---|---|---|---|
| 聚(3,4-乙二氧基噻吩)(PEDOT) | 高导电性、良好的化学稳定性和 出色的机械性能,较好的透光性和加工性能 | 制备成本较高,其在水溶液中的稳定性较差,导电性能可能受到掺杂剂种类和 浓度的影响 | 光电器件、透明电极和柔性电子等领域 |
| 聚吡啶 (polypyridine) | 易成型、质量轻、柔软、耐腐蚀、低密度、高弹性、优良的加工性能、可选择的电导率范围宽、结构易变 和半导体的特性、价格便宜等 | 聚吡啶的合成过程相对复杂,需要精细的控制条件和专业的设备,这增加了传感器的制造成本。在高温、高湿等环境其 性能可能会受到影响 | 在电子器件、传感器、催化剂和 生物医药等领域具有广泛的应用前景 |
| 聚吡咯 (polypyrrole) | 较高的导电性、良好的环境稳定性和易于加工成型的特性,生物相容性和生物活性 | 制备过程中通常需要使用有机溶剂, 可能对环境造成污染,导电性可能受到 温度、湿度等环境因素的影响 | 生物医学领域,如生物传感器和 药物输送系统 |
| 1 | HUANG Huating, LI Tong, JIANG Min, et al. Construction of flexible enzymatic electrode based on gradient hollow fiber membrane and multi-wall carbon tubes meshes[J]. Biosensors and Bioelectronics, 2020, 152: 112001. |
| 2 | ZHU Guanjun, REN Penggang, YANG Junjun, et al. Self-powered and multi-mode flexible sensing film with patterned conductive network for wireless monitoring in healthcare[J]. Nano Energy, 2022, 98: 107327. |
| 3 | BUBE Benjamin, ZANÓN Bruno Baruque, PALMA Ana María Lara, et al. Wearable devices in diving: Scoping review[J]. JMIR MHealth and UHealth, 2022, 10(9): e35727. |
| 4 | IQBAL Sheikh, MAHGOUB Imadeldin, DU E, et al. Advances in healthcare wearable devices[J]. NPJ Flexible Electronics, 2021, 5: 9. |
| 5 | HE Qingsong, ZHONG Qiyun, SUN Zheng, et al. Highly stretchable, repeatable, and easy-to-prepare ionogel based on polyvinyl chloride for wearable strain sensors[J]. Nano Energy, 2023, 113: 108535. |
| 6 | WANG Chunlei, MENG H, WANG Yandong, et al. Potential applications of flexible self-healing polyionic liquids as electronic skin[J]. Journal of Molecular Liquids, 2023, 383: 121981. |
| 7 | XING Tonghe, HE Annan, HUANG Zhiyu, et al. Silk-based flexible electronics and smart wearable textiles: Progress and beyond[J]. Chemical Engineering Journal, 2023, 474: 145534. |
| 8 | LU Guoli, ZHANG Yaojian, ZHANG Jianjun, et al. Trade-offs between ion-conducting and mechanical properties: The case of polyacrylate electrolytes[J]. Carbon Energy, 2023, 5(2): e287. |
| 9 | LIU Han, NI Yezhou, HU Jing, et al. Self-healing and antibacterial essential oil-loaded mesoporous silica/polyacrylate hybrid hydrogel for high-performance wearable body-strain sensing[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21509-21520. |
| 10 | SHARMA Shubham, VERMA Akarsh, RANGAPPA Sanjay Mavinkere, et al. Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC’s) and conducting polymeric nanocomposites (CPNC’s) for multifaceted sensing applications[J]. Journal of Materials Research and Technology, 2023, 26: 5921-5974. |
| 11 | 孙富昌, 潘雨辰, 张云飞, 等. PEDOT: PSS/聚(丙烯酰胺-甲基丙烯酸)导电水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(3): 1131-1140. |
| SUN Fuchang, PAN Yuchen, ZHANG Yunfei, et al. Preparation and properties of PEDOT: PSS/poly(acrylamide-comethacrylic acid) conductive hydrogels[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1131-1140. | |
| 12 | BAI Xiaofeng, DU Yu, GAI Chenhui, et al. Secondary embossing method for the capsulation of high-sensitive flexible piezoresistive sensors[J]. Sensors and Actuators A: Physical, 2022, 335: 113356. |
| 13 | REN Xiaoyue, TIAN Qingli, ZHU Xiaoshuai, et al. Multi-scale closure piezoresistive sensor with high sensitivity derived from polyurethane foam and polypyrrole nanofibers[J]. Chemical Engineering Journal, 2023, 474: 145926. |
| 14 | Roda NUR, MATSUHISA Naoji, JIANG Zhi, et al. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films[J]. Nano Letters, 2018, 18(9): 5610-5617. |
| 15 | LI Tie, LUO Hui, QIN Lin, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer[J]. Small, 2016, 12(36): 5042-5048. |
| 16 | LIU Yang, HU Ying, ZHAO Jingjing, et al. Self-powered piezoionic strain sensor toward the monitoring of human activities[J]. Small, 2016, 12(36): 5074-5080. |
| 17 | WANG Xin, LIU Xianhu, SCHUBERT Dirk W. Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks[J]. Nano-Micro Letters, 2021, 13(1): 64. |
| 18 | NGUYEN Luong N, Hang P VU, FU Qiang, et al. Synthesis and evaluation of cationic polyacrylamide and polyacrylate flocculants for harvesting freshwater and marine microalgae[J]. Chemical Engineering Journal, 2022, 433: 133623. |
| 19 | CHEN Yan, TIAN Mi, SONG Shiqiang, et al. Preparation and application of electrical conductive composites with skin temperature-triggered attachable and on-demand detachable adhesion[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(36): 2315. |
| 20 | GENG Yaqi, CAO Ran, INNOCENT Mugaanire Tendo, et al. A high-sensitive wearable sensor based on conductive polymer composites for body temperature monitoring[J]. Composites Part A: Applied Science and Manufacturing, 2022, 163: 107269. |
| 21 | MU Jiuke, HOU Chengyi, WANG Gang, et al. An elastic transparent conductor based on hierarchically wrinkled reduced graphene oxide for artificial muscles and sensors[J]. Advanced Materials, 2016, 28(43): 9491-9497. |
| 22 | Masoud GHANEI-MOTLAGH, TAHER Mohammad ALI, HEYDARI Abolfazl, et al. A novel voltammetric sensor for sensitive detection of mercury(Ⅱ) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer[J]. Materials Science and Engineering: C, 2016, 63: 367-375. |
| 23 | WANG Aili, YE Tingting, LIU Yuyang, et al. Facile in situ synthesis of carbon black@poly(ionic liquid) composites with a smooth U-link chain macrostructure within surfactant-free ionic liquid microemulsions[J]. Composites Part A: Applied Science and Manufacturing, 2024, 176: 107859. |
| 24 | LUO Jiajun, YANG Liangwei, SUN Danping, et al. Graphene oxide “surfactant”-directed tunable concentration of graphene dispersion[J]. Small, 2020, 16(45): 2003426. |
| 25 | QIAN Liu, XIE Ying, ZOU Mingzhi, et al. Building a bridge for carbon nanotubes from nanoscale structure to macroscopic application[J]. Journal of the American Chemical Society, 2021, 143(45): 18805-18819. |
| 26 | MENDES-FELIPE C, OLIVEIRA J, COSTA P, et al. Stimuli responsive UV cured polyurethane acrylated/carbon nanotube composites for piezoresistive sensing[J]. European Polymer Journal, 2019, 120: 109226. |
| 27 | ANIRUDHAN Thayyath S, ALEXANDER Sheeba. A potentiometric sensor for the trace level determination of hemoglobin in real samples using multiwalled carbon nanotube based molecular imprinted polymer[J]. European Polymer Journal, 2017, 97: 84-93. |
| 28 | QIN Ruzhan, NONG Juan, WANG Keqiang, et al. Recent advances in flexible pressure sensors based on MXene materials[J]. Advanced Materials, 2024, 36(24): 2312761. |
| 29 | GONG Kaili, ZHOU Keqing, QIAN Xiaodong, et al. MXene as emerging nanofillers for high-performance polymer composites: A review[J]. Composites Part B: Engineering, 2021, 217: 108867. |
| 30 | DU Tao, HAN Xin, YAN Xiuling, et al. MXene‐based flexible sensors: Materials, preparation, and applications [J]. Advanced Materials Technologies, 2023, 8: 2202029. |
| 31 | YE Chongnan, YAN Feng, LAN Xiaohong, et al. Novel MXene sensors based on fast healing vitrimers [J]. Applied Materials Today, 2022, 29: 101683. |
| 32 | YAN Jinfeng, MA Yanan, LI Xingxing, et al. Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure[J]. Ceramics International, 2020, 46(15): 23592-23598. |
| 33 | HE Yang, DENG Zepeng, WANG Yanjie, et al. Polysaccharide/Ti3C2T x MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors[J]. Carbohydrate Polymers, 2022, 291: 119572. |
| 34 | LU Qishu, LIU Wenxia, LIU Xiaona, et al. Using xanthan gum and PEDOT: PSS to costabilize Ga droplets to synergistically improve the toughness and sensing performance of polyacrylamide hydrogels[J]. Science China Materials, 2023, 66(9): 3723-3734. |
| 35 | CUI Yifan, JIANG Zhe, ZHENG Guolin, et al. Green preparation of PEDOT-based composites with outstanding electrothermal heating and durable rapid-response sensing performance for smart healthcare textiles[J]. Chemical Engineering Journal, 2022, 446: 137189. |
| 36 | WANG H, HE X, HUANG X, et al. Vapor-based fabrication of PEDOT coating for wearable strain sensors with excellent sensitivity and self-cleaning capability[J]. Materials Today Chemistry, 2023, 28: 101361. |
| 37 | SUN Yuanna, LU Shuaishuai, DU Ying, et al. Long-lasting moisture and anti-freezing tough organohydrogels based on multi-functional nano-micelles for flexible dual-response sensors[J]. Journal of Applied Polymer Science, 2022, 139(38): e52916. |
| 38 | WU Hankai, SEGUIN Fabrice, KONCAR Vladan, et al. Stretchable piezoresistive textile yarn strain transducer for low deformation detection[J]. Sensors and Actuators A: Physical, 2023, 363: 114755. |
| 39 | BROOKE Robert, Makara LAY, JAIN Karishma, et al. Nanocellulose and PEDOT: PSS composites and their applications[J]. Polymer Reviews, 2023, 63(2): 437-477. |
| 40 | LEE Seung-Woo, TAKAHARA Naoki, KORPOSH Sergiy, et al. Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors[J]. Analytical Chemistry, 2010, 82(6): 2228-2236. |
| 41 | YUAN Ye, ZHANG He, QU Jinqing. Pyridine-dicarbohydrazone-based polyacrylate hydrogels with strong mechanical property, tunable/force-induced fluorescence, and thermal/pH stimuli responsiveness[J]. ACS Applied Polymer Materials, 2021, 3(9): 4512-4522. |
| 42 | LI Y, YANG M J, SHE Y. Humidity sensitive properties of crosslinked and quaternized poly(4-vinylpyridine-co-butyl methacrylate)[J]. Sensors and Actuators B: Chemical, 2005, 107(1): 252-257. |
| 43 | LIU Qi, SUN Qiqi, SHEN Jingshun, et al. Emerging tetrapyrrole porous organic polymers for chemosensing applications[J]. Coordination Chemistry Reviews, 2023, 482: 215078. |
| 44 | CHENG Haonan, WANG Bo, YANG Kun, et al. A high-performance piezoresistive sensor based on poly (styrene-co-methacrylic acid)@polypyrrole microspheres/graphene-decorated TPU electrospun membrane for human motion detection[J]. Chemical Engineering Journal, 2021, 426: 131152. |
| 45 | HE Xiaofeng, ZENG Zifan, NI Qingyue, et al. Mechanical robust and highly conductive composite hydrogel reinforced by a combination of cellulose nanofibrils/polypyrrole toward high-performance strain sensor[J]. Composites Part B: Engineering, 2023, 266: 111022. |
| 46 | CHEN Cheng, WANG Jiajun, XU Ziqi, et al. Highly stretchable, self-healable and adhesive, thermal responsive conductive hydrogel loading nanocellulose complex for a flexible sensor[J]. International Journal of Biological Macromolecules, 2023, 247: 125595. |
| 47 | LIAO Qingwei, YIN Yuxiang, ZHANG Jingxin, et al. In situ growth of nanosilver on fabric for flexible stretchable electrodes[J]. International Journal of Molecular Sciences, 2022, 23(21): 13236. |
| 48 | 汤桂君, 殷柯柯, 原会雨. 纳米材料在柔性压阻式压力传感器中的研究进展[J]. 复合材料学报, 2023, 40(7): 3722-3737. |
| TANG Guijun, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737. | |
| 49 | CHENG Jing, LI Yifan, ZHONG Ji, et al. Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone[J]. Chemical Engineering Journal, 2020, 398: 125664. |
| 50 | KIM Youngmin, KIM Jong-Woong. Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor[J]. Applied Surface Science, 2016, 363: 1-6. |
| 51 | WU Yunhui, XING Shuting, ZHENG Rongmin, et al. Interface design for enhancing the wettability of liquid metal to polyacrylate for intrinsically soft electronics[J]. Journal of Materials Chemistry C, 2018, 6(25): 6755-6763. |
| 52 | LI Zhikang, ZHANG Shiming, CHEN Yihang, et al. Gelatin methacryloyl-based tactile sensors for medical wearables[J]. Advanced Functional Materials, 2020, 30(49): 2003601. |
| 53 | 李楠, 高党鸽, 吕斌, 等. 皮胶原在柔性智能可穿戴领域的研究进展[J]. 化工进展, 2024, 43(5): 2645-2660. |
| LI Nan, GAO Dangge, Bin LYU, et al. Research progress of skin collagen in the field of flexible smart wearables [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2645-2660. | |
| 54 | Jun Ho LIM, KIM Min Jeong, YOON Ho Gyu, et al. Highly sensitive and long-term stretchable eutectic nanogel conductor with conducting interpenetrating nanogel networks for monitoring human motions[J]. Composites Part B: Engineering, 2022, 247: 110299. |
| 55 | REN Jiayuan, LIU Yanhui, WANG Zengqiang, et al. An anti-swellable hydrogel strain sensor for underwater motion detection[J]. Advanced Functional Materials, 2022, 32(13): 2107404. |
| 56 | 徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J]. 化工进展, 2023, 42(10): 5259-5271. |
| XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensors[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5259-5271. | |
| 57 | WIJAYARATNA Uthpala, KIRIDENA Sachindra, ADAMS John D, et al. Synovial fluid pH sensor for early detection of prosthetic hip infections[J]. Advanced Functional Materials, 2021, 31(37): 2104124. |
| 58 | WACKERS Gideon, PUTZEYS Tristan, PEETERS Marloes, et al. Towards a catheter-based impedimetric sensor for the assessment of intestinal histamine levels in IBS patients[J]. Biosensors & Bioelectronics, 2020, 158: 112152. |
| [1] | You WANG,Qiang LI,Shixiang ZUO,Xiazhang LI,Wenjie LIU,Fengqin WU,Chao YAO. Preparation of rutile TiO2 dispersion slurry and its rheological properties [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5465-5470. |
| [2] | LI Yufeng, GAO Xiaohui, ZHU Jingjing, TONG Liping, FAN Liquan. Research progress of preparation of polyaniline/polyacrylic(polyacrylate) composites [J]. Chemical Industry and Engineering Progree, 2015, 34(3): 751-757,789. |
| [3] | LI Lijun,CUI Yue,LI Qingsong,LIU Tao,LI Yanqing . Research on the clarification and decolorization by hemicarbonation method for the remelt syrup of brown granulated sugar [J]. Chemical Industry and Engineering Progree, 2013, 32(08): 1755-1758. |
| [4] | ZHANG Weigang,CUI Yingde,FANG Yanxiong. Application of polyacrylate-sodium super absorbent polymer in drag reduction and lubrication [J]. Chemical Industry and Engineering Progree, 2007, 26(5): 735-. |
| [5] | ZHU Ningxiang,YE Daiyong,CHEN Huanqin. Progress of polyurethane/acrylate hybrid emulsion [J]. Chemical Industry and Engineering Progree, 2007, 26(10): 1419-. |
| [6] | PAN Hongxia,XIAO Mingyu,CHEN Dajun. Preparation and properties of polyurethane/polyacrylate (PUA) hybrid emulsion [J]. Chemical Industry and Engineering Progree, 2006, 25(9): 1064-. |
| [7] |
YU Dongxiu,WEN Xiufang,PI Pihui,CHENG Jiang,YANG Zhuoru.
Research progress of complex conductive filler in electromagnetic shielding coating [J]. Chemical Industry and Engineering Progree, 2006, 25(8): 890-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |