Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 329-340.DOI: 10.16085/j.issn.1000-6613.2023-2260
• Materials science and technology • Previous Articles Next Articles
YANG Runnong1,2(), BAI Fanfei1, LIN Zirong1, SUN Yongming2, YIN Xiang3
Received:
2023-12-25
Revised:
2024-02-04
Online:
2025-02-13
Published:
2025-01-15
Contact:
YANG Runnong
杨润农1,2(), 白帆飞1, 林梓荣1, 孙永明2, 尹祥3
通讯作者:
杨润农
作者简介:
杨润农(1989—),女,博士,研究方向为多相催化。E-mail:Yangrn0814@163.com。
基金资助:
CLC Number:
YANG Runnong, BAI Fanfei, LIN Zirong, SUN Yongming, YIN Xiang. Research progress on adsorptive removal of organic sulfides by zeolite[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 329-340.
杨润农, 白帆飞, 林梓荣, 孙永明, 尹祥. 分子筛吸附脱除有机硫的研究进展[J]. 化工进展, 2025, 44(1): 329-340.
样品名称 | 吸附硫化物 | 穿透硫容/mmol S·g-1 | 平衡吸附硫容/mmol S·g-1 | 参考文献 |
---|---|---|---|---|
Y | TH | 0.20(<1×10-6) | — | [ |
ZSM-5 | DMS | 0.132(<2×10-5) | — | [ |
ZSM-5 | TH | — | 0.04 | [ |
β | TH+BT | 0.156(<1×10-6) | — | [ |
MCM-41 | BT | 0.02(<1×10-6) | — | [ |
MCM-41 | TH | — | 0.16 | [ |
SBA-15 | BT | 0.03(<1×10-6) | — | [ |
KIT-6 | BT | 0.04(<1×10-6) | — | |
KIT-6 | TH | 0.0336 | — | [ |
Cu/Y | TH | 0.95(<1×10-6) | — | [ |
酸修饰的Y | TH | 0.85(<1×10-7) | — | [ |
Ce-ZSM-5 | TH | — | 0.16 | [ |
Cu-ZSM-5 | TH | — | 0.08 | [ |
Fe-ZSM-5 | TH | — | 0.06 | [ |
Ni-ZSM-5 | TH | — | 0.15 | [ |
Cu/β | TH+BT | 0.239(<1×10-6) | — | [ |
Ag/β | TH+BT | 0.237(<1×10-6) | — | [ |
Al-MCM-41 | 未知 | 0.25(<1×10-4) | — | [ |
Fe-MCM-41 | TH | — | 0.165 | [ |
Co-MCM-41 | TH | — | 0.162 | [ |
Zn-MCM-41 | TH | — | 0.165 | [ |
Cu/SBA-15 | TH | — | 0.155 | [ |
La2O3/SBA-15 | TH+BT+DBT | 0.11 | — | [ |
Cu-KIT-6 | TH | — | 0.398 | [ |
CeO2/KIT-6 | TH | 0.14 | — | [ |
La2O3/KIT-6 | TH | 0.2 | — | [ |
Ni/KIT-6 | TH | 0.195 | — | [ |
Cu-MCM-48 | TH | — | 0.87 | [ |
微-介孔氧化硅 | BT | 0.122(<1×10-6) | — | [ |
微-介孔ZSM-5 | TH | — | 0.13 | [ |
微-介孔ZSM-5 | TH | — | 0.057 | [ |
Ni/微-介孔ZSM-5 | TH | — | 0.168 | [ |
Cu/微-介孔ZSM-5 | TH | — | 0.44 | [ |
样品名称 | 吸附硫化物 | 穿透硫容/mmol S·g-1 | 平衡吸附硫容/mmol S·g-1 | 参考文献 |
---|---|---|---|---|
Y | TH | 0.20(<1×10-6) | — | [ |
ZSM-5 | DMS | 0.132(<2×10-5) | — | [ |
ZSM-5 | TH | — | 0.04 | [ |
β | TH+BT | 0.156(<1×10-6) | — | [ |
MCM-41 | BT | 0.02(<1×10-6) | — | [ |
MCM-41 | TH | — | 0.16 | [ |
SBA-15 | BT | 0.03(<1×10-6) | — | [ |
KIT-6 | BT | 0.04(<1×10-6) | — | |
KIT-6 | TH | 0.0336 | — | [ |
Cu/Y | TH | 0.95(<1×10-6) | — | [ |
酸修饰的Y | TH | 0.85(<1×10-7) | — | [ |
Ce-ZSM-5 | TH | — | 0.16 | [ |
Cu-ZSM-5 | TH | — | 0.08 | [ |
Fe-ZSM-5 | TH | — | 0.06 | [ |
Ni-ZSM-5 | TH | — | 0.15 | [ |
Cu/β | TH+BT | 0.239(<1×10-6) | — | [ |
Ag/β | TH+BT | 0.237(<1×10-6) | — | [ |
Al-MCM-41 | 未知 | 0.25(<1×10-4) | — | [ |
Fe-MCM-41 | TH | — | 0.165 | [ |
Co-MCM-41 | TH | — | 0.162 | [ |
Zn-MCM-41 | TH | — | 0.165 | [ |
Cu/SBA-15 | TH | — | 0.155 | [ |
La2O3/SBA-15 | TH+BT+DBT | 0.11 | — | [ |
Cu-KIT-6 | TH | — | 0.398 | [ |
CeO2/KIT-6 | TH | 0.14 | — | [ |
La2O3/KIT-6 | TH | 0.2 | — | [ |
Ni/KIT-6 | TH | 0.195 | — | [ |
Cu-MCM-48 | TH | — | 0.87 | [ |
微-介孔氧化硅 | BT | 0.122(<1×10-6) | — | [ |
微-介孔ZSM-5 | TH | — | 0.13 | [ |
微-介孔ZSM-5 | TH | — | 0.057 | [ |
Ni/微-介孔ZSM-5 | TH | — | 0.168 | [ |
Cu/微-介孔ZSM-5 | TH | — | 0.44 | [ |
1 | YANG Ralph T, HERNÁNDEZ-MALDONADO Arturo J, YANG Frances H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79-81. |
2 | 张杰. 基于层状纳米材料酸碱作用对脱硫性能的影响[D]. 淮南: 安徽理工大学, 2021. |
ZHANG Jie. Effect of acid-base interaction on desulfurization performance of layered nanomaterials[D]. Huainan: Anhui University of Science & Technology, 2021. | |
3 | 卫藩婧. 超深度脱除焦炉煤气中噻吩吸附剂的制备及其脱硫机理研究[D]. 太原: 太原理工大学, 2022. |
WEI Fanjing. Preparation of sorbent for ultra-deep removal of thiophene in coke oven gas and the desulfurization mechanism[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
4 | 刘畅, 闫志义, 李巧灵, 等. 选择吸附脱硫研究进展[J]. 化工进展, 2019, 38(11): 5114-5126. |
LIU Chang, YAN Zhiyi, LI Qiaoling, et al. Research progress of selective adsorption desulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5114-5126. | |
5 | 张鹏. 基于Cu(Ⅰ)多孔吸附剂材料的制备及深度脱硫性能研究[D]. 扬州: 扬州大学, 2021. |
ZHANG Peng. Study on preparation and deep desulfurization performance of porous adsorbent material based on Cu(Ⅰ) [D]. Yangzhou: Yangzhou University, 2021. | |
6 | SAHA Biswajit, VEDACHALAM Sundaramurthy, DALAI Ajay K. Review on recent advances in adsorptive desulfurization[J]. Fuel Processing Technology, 2021, 214: 106685. |
7 | MA Xiaoliang, SUN Lu, SONG Chunshan. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catalysis Today, 2002, 77(1/2): 107-116. |
8 | 周金波, 高雄厚, 李长明, 等. 一种裂化汽油吸附脱硫的工艺: CN104277877A[P]. 2015-01-14. |
ZHOU Jinbo, GAO Xionghou, LI Changming, et al. A process for adsorptive desulphurisation of cracked gasoline: CN104277877A[P]. 2015-01-14. | |
9 | 刘思彤, 石薇薇, 曹祖宾, 等. FCC汽油重馏分氧化-吸附脱硫的研究[J]. 现代化工, 2018, 38(4): 148-151, 153. |
LIU Sitong, SHI Weiwei, CAO Zubin, et al. Study on oxidation-adsorption desulfurization of FCC heavy gasoline fractions[J]. Modern Chemical Industry, 2018, 38(4): 148-151, 153. | |
10 | 王永杰. 多级孔分子筛的制备、改性及吸附天然气中有机硫性能研究[D]. 青岛: 中国石油大学(华东), 2019. |
WANG Yongjie. Preparation and modified of hierarchical zeolites and adsorption performance of organic sulfur in natural gas[D]. Qingdao: China University of Petroleum (East China), 2019. | |
11 | HERNÁNDEZ-MALDONADO Arturo J, YANG Ralph T. Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu(Ⅰ)-Y zeolite[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 3103-3110. |
12 | HERNÁNDEZ-MALDONADO Arturo J, YANG Ralph T. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(Ⅰ)-Y zeolites[J]. Journal of the American Chemical Society, 2004, 126(4): 992-993. |
13 | DUAN Linhai, GAO Xionghou, MENG Xiuhong, et al. Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y zeolite[J]. The Journal of Physical Chemistry C, 2012, 116(49): 25748-25756. |
14 | SUN Yao, LI Lan, JU Feng, et al. Evolution of nickel species in reactive adsorption desulfurization of benzothiophene[J]. Separation and Purification Technology, 2022, 283: 120204. |
15 | ZHANG Yuliang, YANG Yongxing, LIN Feng, et al. Improvement of adsorptive desulfurization performance of Ni/ZnO adsorbent by doping with Mn additive[J]. Chinese Journal of Catalysis, 2013, 34(1): 140-145. |
16 | WANG Guangyong, XU Shaoping, WANG Chao, et al. Desulfurization and tar reforming of biogenous syngas over Ni/olivine in a decoupled dual loop gasifier[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15471-15478. |
17 | PRAJAPATI Yogendra Nath, VERMA Nishith. Fixed bed adsorptive desulfurization of thiophene over Cu/Ni-dispersed carbon nanofiber[J]. Fuel, 2018, 216: 381-389. |
18 | 龙彩梅, 武帅山, 王建成, 等. 基于分子筛结构特性的高温煤气脱硫剂应用现状[J]. 化工进展, 2023, 42(11): 5943-5955. |
LONG Caimei, WU Shuaishan, WANG Jiancheng, et al. Status of high temperature gas desulfurizer with structural characteristics of molecular sieves[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5943-5955. | |
19 | LEE Doohwan, Eun-Yong KO, LEE Hyun Chul, et al. Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) using Na-Y and AgNa-Y zeolites for fuel cell applications[J]. Applied Catalysis A: General, 2008, 334(1/2): 129-136. |
20 | ZU Yun, GUO Zhongsen, ZHENG Jian, et al. Investigation of Cu(Ⅰ)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites[J]. Chemical Engineering Journal, 2020, 380: 122319. |
21 | 黄朝晖, 刘乃旺. 废FCC催化剂在LPG吸附脱硫中的资源化利用[J]. 化工进展, 2022, 41(1): 453-460. |
HUANG Chaohui, LIU Naiwang. Resource utilization of spent FCC catalysts in LPG adsorption desulfurization[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 453-460. | |
22 | RATNASAMY Chandra, WAGNER Jon P, SPIVEY Steve, et al. Removal of sulfur compounds from natural gas for fuel cell applications using a sequential bed system[J]. Catalysis Today, 2012, 198(1): 233-238. |
23 | 刘棋, 赵启龙, 祁亚玲, 等. 13X分子筛在有机硫脱除中的应用研究[J]. 天然气与石油, 2021, 39(6): 39-44. |
LIU Qi, ZHAO Qilong, QI Yaling, et al. Application of 13X molecular sieve in organic sulfur removal[J]. Natural Gas and Oil, 2021, 39(6): 39-44. | |
24 | CHEN Guolong, ZHANG Chao, JIA Ke, et al. The relationship between the preparation conditions and the crystallinity of ZSM-5 and the adsorption performance of sulfide in nature gas[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2021: 1-12. |
25 | 韩树春. 改性HZSM-5分子筛吸附CH3SH研究[D]. 昆明: 昆明理工大学, 2022. |
HAN Shuchun. Modified HZSM-5 molecular sieve adsorption CH3SH Research[D]. Kunming: Kunming University of Science and Technology, 2022. | |
26 | 赵晓慧, 陈海军. 晶种辅助合成高硅BEA分子筛[C]//中国化学会催化委员会. 第十一届全国环境催化与环境材料学术会议论文集. Shenyang, 2018. |
ZHAO Xiaohui, CHEN Haijun. Crystal seed-assisted synthesis of high-silica BEA molecular sieves[C]//The Catalysis Society of China. Proceedings of the 11th National Conference on Environmental Catalysis and Environmental Materials. Shenyang, 2018. | |
27 | 周盼. 多级孔β分子筛的制备及其烷基化性能研究[D]. 西安: 西北大学, 2022. |
ZHOU Pan. Preparation of hierarchical β zeolites for alkylation reaction[D]. Xi'an: Northwest University, 2022. | |
28 | 王倩. β分子筛的孔结构和酸性对FCC汽油硫转移反应性能的影响[D]. 西安: 西安石油大学, 2019. |
WANG Qian. Effect of pore structure and acidity of β molecular sieve on sulfur transfer reaction performance of FCC gasoline[D]. Xi’an: Xi’an Shiyou University, 2019. | |
29 | GONG Yanjun, DOU Tao, KANG Shanjiao, et al. Deep desulfurization of gasoline using ion-exchange zeolites: Cu(Ⅰ) - and Ag(Ⅰ)-beta[J]. Fuel Processing Technology, 2009, 90(1): 122-129. |
30 | 莫周胜. 沸石分子筛B酸位微环境对噻吩硫化物吸附和反应影响研究[D]. 青岛: 中国石油大学(华东), 2020. |
MO Zhousheng. Effect of microenvironment of Brønsted acid sites in zeolites on adsorption and reaction of thiophenic sulfur compounds[D]. Qingdao: China University of Petroleum (East China), 2020. | |
31 | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712. |
32 | ALVARADO-PEREA L, COLÍN-LUNA J A, LÓPEZ-GAONA A, et al. Simultaneous adsorption of quinoline and dibenzothiophene over Ni-based mesoporous materials at different Si/Al ratio[J]. Catalysis Today, 2020, 353: 26-38. |
33 | GUO Yuhua, PAN Guoxiang, XU Minhong, et al. Synthesis and adsorption desulfurization performance of modified mesoporous silica materials M-MCM-41 (M = Fe, Co, Zn)[J]. Clays and Clay Minerals, 2019, 67(4): 325-333. |
34 | MÉNDEZ Franklin J, FRANCO-LÓPEZ Oscar E, Gabriela DÍAZ, et al. On the role of niobium in nanostructured Mo/Nb-MCM-41 and NiMo/Nb-MCM-41 catalysts for hydrodesulfurization of dibenzothiophene[J]. Fuel, 2020, 280: 118550. |
35 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Highly dispersive lanthanum oxide fabricated in confined space of SBA-15 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2020, 384: 123271. |
36 | 周文高, 谢华. 一种液化石油气吸附脱硫工艺: CN115651725A[P]. 2023-01-31. |
ZHOU Wengao, XIE Hua. A liquefied petroleum gas adsorption desulphurisation process: CN115651725A[P]. 2023-01-31. | |
37 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Size regulation and dispersion of ceria using confined spaces for adsorptive desulfurization[J]. Chemical Engineering Journal, 2018, 348: 319-326. |
38 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Facile fabrication of La3+ sites in confined spaces for adsorptive desulfurization[J]. Fuel Processing Technology, 2022, 236: 107423. |
39 | ASLAM Sobia, SUBHAN Fazle, YAN Zifeng, et al. Facile fabrication of Ni-based KIT-6 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2016, 302: 239-248. |
40 | SHAN Jiahui, CHEN Le, SUN Linbing, et al. Adsorptive removal of thiophene by Cu-modified mesoporous silica MCM-48 derived from direct synthesis[J]. Energy & Fuels, 2011, 25(7): 3093-3099. |
41 | Cigdem SENTORUN-SHALABY, SAHA Shyamal Kumar, MA Xiaoliang, et al. Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 718-726. |
42 | ZHAO You, ZHAO Wenkai, XIAO Yonghou, et al. Construction of novel super microporous silica adsorbents using pluronic triblock copolymer as template towards desulfurization from fuel[J]. Fuel, 2023, 334: 126657. |
43 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Confinement of mesopores within ZSM-5 and functionalization with Ni NPs for deep desulfurization[J]. Chemical Engineering Journal, 2018, 354: 706-715. |
44 | 袁世阳. 金属掺杂ZSM-5分子筛制备及脱硫性能研究[D]. 开封: 河南大学, 2018. |
YUAN Shiyang. Study on preparation and desulfurization properties of metal doping ZSM-5 zeolite[D]. Kaifeng: Henan University, 2018. | |
45 | WEI Fanjing, GUO Xiaoqin, LIAO Junjie, et al. Ultra-deep removal of thiophene in coke oven gas over Y zeolite: Effect of acid modification on adsorption desulfurization[J]. Fuel Processing Technology, 2021, 213: 106632. |
46 | LIU B S, XU D F, CHU J X, et al. Deep desulfurization by the adsorption process of fluidized catalytic cracking (FCC) diesel over mesoporous Al-MCM-41 materials[J]. Energy & Fuels, 2007, 21(1): 250-255. |
47 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2018, 339: 557-565. |
48 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Enhanced desulfurization characteristics of Cu-KIT-6 for thiophene[J]. Microporous and Mesoporous Materials, 2014, 199: 108-116. |
49 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Highly dispersive Cu species constructed in mesoporous silica derived from ZSM-5 for batch and continuous adsorptive desulfurization of thiophene[J]. Fuel Processing Technology, 2022, 235: 107351. |
50 | 吕梦颖, 李芹, 王晓胜, 等. 改性ZSM-5分子筛吸附脱除甲基叔丁基醚中的二甲基二硫醚[J]. 天然气化工, 2018, 43(3): 15-19, 32. |
Mengying LYU, LI Qin, WANG Xiaosheng, et al. Adsorption removal of dimethyl disulfide in methyl tert-butyl ether by modified ZSM-5[J]. Natural Gas Chemical Industry, 2018, 43(3): 15-19, 32. | |
51 | 张旭阳, 武蒙蒙, 李俏春, 等. 载体形貌对ZnO/SBA-15煤气脱硫剂结构及性能的影响[J]. 天然气化工, 2022, 47(3): 33-40. |
ZHANG Xuyang, WU Mengmeng, LI Qiaochun, et al. Effect of carrier morphology on structure and properties of ZnO/SBA-15 coal gas desulfurizer[J]. Natural Gas Chemical Industry, 2022, 47(3): 33-40. | |
52 | 赵国星, 朱雯钊, 杨威. 分子筛脱除天然气中硫醇技术研究[J]. 石油与天然气化工, 2020, 49(4): 1-7. |
ZHAO Guoxing, ZHU Wenzhao, YANG Wei. Removal of mercaptan from natural gas by molecular sieve[J]. Chemical Engineering of Oil & Gas, 2020, 49(4): 1-7. | |
53 | SUBHAN Fazle, LIU B S. Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents[J]. Chemical Engineering Journal, 2011, 178: 69-77. |
[1] | ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392. |
[2] | LIANG Yanyan, ZHANG Junliang, GUO Yunya, ZHANG Yanting. The role of seed in the synthesis of molecular sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1275-1292. |
[3] | SU Shikun, LIU Tang, JIN Ye, ZHENG Jinyu. Advances of adsorption materials for hydrogen purification [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5612-5632. |
[4] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[5] | JIAO Zhaocai, FU Zhaolin, ZHU Zhongpeng, WANG Wenke, ZHAO Jie, TAO Zhiping. Progress in synthesis of adamantane [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 209-215. |
[6] | ZHONG Huangliang, WANG Chunxia, ZHOU Guanglin, ZHOU Hongjun. Static adsorption desulfurization based on nanomaterials [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2655-2663. |
[7] | LIU Yujie, YAN Lunjing, BAI Yonghui, LI Fan. Research progress of mesopore-modification of Y zeolites [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 569-575. |
[8] | LI Jingjing, LI Ruili, JIANG Shanliang, CHANG Weike. Removal of dichloroethane in model oil with modified SAPO-34 zeolites [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3730-3736. |
[9] | ZHANG Yuanchun,MIAO Haixia,WANG Peng,MA Jinghong,LI Ruifeng. Advances of hierarchical zeolites in aromatic hydrocarbon alkylation [J]. Chemical Industry and Engineering Progree, 2013, 32(05): 1065-1069. |
[10] | NING Huiqing1,LU Xinglu2,LIU Quan2,REN Jun2,LI Zhong2. Process for the preparation of copper containing zeolites by solid state ion-exchange method [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 1950-1958. |
[11] | LIU Haiyan,YI Honghong,TANG Xiaolong,DENG Hua . Progress in desulfurization,decarbonization and denitrification from coal-combustion flue gas by zeolite adsorption [J]. Chemical Industry and Engineering Progree, 2012, 31(06): 1347-1352. |
[12] | HE Tianping,MA Rongsheng,ZHANG Danhui,JIAN Xiangjie. Study on O-hydroxy by ethylation of diethyl carbonate and catechol [J]. Chemical Industry and Engineering Progree, 2009, 28(6): 1027-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |