Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 305-318.DOI: 10.16085/j.issn.1000-6613.2023-2222
• Materials science and technology • Previous Articles Next Articles
WANG Xiangpeng1,2,3(), ZHENG Yunxiang2, ZHANG Chunxiao2,3, CHEN Chunmao1(
)
Received:
2023-12-19
Revised:
2024-06-25
Online:
2025-02-13
Published:
2025-01-15
Contact:
CHEN Chunmao
王向鹏1,2,3(), 郑云香2, 张春晓2,3, 陈春茂1(
)
通讯作者:
陈春茂
作者简介:
王向鹏(1989—),男,博士研究生,副教授,研究方向为水凝胶制备与改性。E-mail:wangxiangpeng1989@163.com。
基金资助:
CLC Number:
WANG Xiangpeng, ZHENG Yunxiang, ZHANG Chunxiao, CHEN Chunmao. Preparation and application of carbon dots hybrid hydrogels[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 305-318.
王向鹏, 郑云香, 张春晓, 陈春茂. 碳点杂化水凝胶的制备及应用[J]. 化工进展, 2025, 44(1): 305-318.
类型 | 制备方法 | 工艺特点 | CDs结构特征 | 参考文献 |
---|---|---|---|---|
自上而下 | 电弧放电法 | 电弧放电法是最早制备CDs的方法,通过弧光放电使碳材料热解、炭化。优点是原料适应性广,制得的CDs荧光性能较好;缺点是产率低,仅占悬浮液的10%(质量分数)左右,纯化过程复杂,不利于产物的收集;能耗高,难以工业化 | 粒径小(1~5nm)但不均匀,荧光性能好但不易纯化,易溶于水,氧含量高,无须进行表面修饰就能发出荧光 | [ |
激光刻蚀法 | 通过激光束对碳源进行照射消蚀,将碳纳米颗粒从碳源上剥落下来,从而获得CDs。优点是通过简单调节激光器脉冲能量和时间可以调控CDs的大小和荧光量子效率;缺点是所用仪器昂贵、合成过程复杂、产率低以及杂质多等,因此该法较少使用 | 尺寸小,可调性强,荧光性能好,具有良好的稳定性和出色的抗干扰性能,粒径均匀性差 | [ | |
电化学法 | 强电场作用下将工作电极的大块碳材料剥离而制备CDs。优点是通过调整电极电势与电流密度能精确控制CDs的合成,且对碳源的利用率较高;缺点是碳源前期处理工作烦琐耗时,后期CDs的纯化所需透析等步骤的耗时较长,杂原子掺杂选择有限 | 呈均匀球状,粒径较小,粒径分布较窄,均匀性好,稳定,荧光效应较强 | [ | |
化学氧化法 | 化学氧化法是利用强氧化剂氧化切割大块碳材料制备出CDs,操作简单,成本低,收率高,易大规模生产,但需用到强氧化剂,存在安全隐患 | 荧光寿命长,结晶度好,粒径分布窄,直径1~3nm,无需表面修饰即可发光 | [ | |
自下而上 | 微波法 | 微波法主要是利用微波消解碳前体来制备CDs。优点是操作简便、快捷,可扩展性强,成本低;缺点是所得CDs粒径分布不均匀,需进一步分离 | 水溶性好,荧光稳定,纯度高,粒径均匀性差 | [ |
模板法 | 模板作为支撑材料合成CDs后再将模板除去,该方法能有效防止CDs在高温处理过程中发生团聚。优点是操作简单,设备易得;缺点是纯化时较复杂和困难,模板除去时可能会对CDs的性质产生不利影响 | 粒径均匀,水溶性好,荧光效应较强,表面有羟基、羧基等官能团,生物毒性低,尺寸、成分和结晶度可调 | [ | |
水热法 | 水热法是目前最常用的制备CDs的方法之一,将含碳前体在高温高压下直接通过水热反应制备CDs,合成过程简单,且粒径较为均匀,可在一步反应中进行表面修饰,利于大量生产 | 水溶性好,表面官能团丰富,尺寸小,粒径分布均匀,荧光稳定 | [ | |
固相法 | 含碳前体在固相介质中发生反应,反应条件易于控制,能实现高产率制备CDs,避免了合成过程中有机试剂的使用,因此对环境无害,但反应速率难以控制 | 良好的水溶性、光稳定性和高离子强度的稳定性,但粒径分布不均匀 | [ |
类型 | 制备方法 | 工艺特点 | CDs结构特征 | 参考文献 |
---|---|---|---|---|
自上而下 | 电弧放电法 | 电弧放电法是最早制备CDs的方法,通过弧光放电使碳材料热解、炭化。优点是原料适应性广,制得的CDs荧光性能较好;缺点是产率低,仅占悬浮液的10%(质量分数)左右,纯化过程复杂,不利于产物的收集;能耗高,难以工业化 | 粒径小(1~5nm)但不均匀,荧光性能好但不易纯化,易溶于水,氧含量高,无须进行表面修饰就能发出荧光 | [ |
激光刻蚀法 | 通过激光束对碳源进行照射消蚀,将碳纳米颗粒从碳源上剥落下来,从而获得CDs。优点是通过简单调节激光器脉冲能量和时间可以调控CDs的大小和荧光量子效率;缺点是所用仪器昂贵、合成过程复杂、产率低以及杂质多等,因此该法较少使用 | 尺寸小,可调性强,荧光性能好,具有良好的稳定性和出色的抗干扰性能,粒径均匀性差 | [ | |
电化学法 | 强电场作用下将工作电极的大块碳材料剥离而制备CDs。优点是通过调整电极电势与电流密度能精确控制CDs的合成,且对碳源的利用率较高;缺点是碳源前期处理工作烦琐耗时,后期CDs的纯化所需透析等步骤的耗时较长,杂原子掺杂选择有限 | 呈均匀球状,粒径较小,粒径分布较窄,均匀性好,稳定,荧光效应较强 | [ | |
化学氧化法 | 化学氧化法是利用强氧化剂氧化切割大块碳材料制备出CDs,操作简单,成本低,收率高,易大规模生产,但需用到强氧化剂,存在安全隐患 | 荧光寿命长,结晶度好,粒径分布窄,直径1~3nm,无需表面修饰即可发光 | [ | |
自下而上 | 微波法 | 微波法主要是利用微波消解碳前体来制备CDs。优点是操作简便、快捷,可扩展性强,成本低;缺点是所得CDs粒径分布不均匀,需进一步分离 | 水溶性好,荧光稳定,纯度高,粒径均匀性差 | [ |
模板法 | 模板作为支撑材料合成CDs后再将模板除去,该方法能有效防止CDs在高温处理过程中发生团聚。优点是操作简单,设备易得;缺点是纯化时较复杂和困难,模板除去时可能会对CDs的性质产生不利影响 | 粒径均匀,水溶性好,荧光效应较强,表面有羟基、羧基等官能团,生物毒性低,尺寸、成分和结晶度可调 | [ | |
水热法 | 水热法是目前最常用的制备CDs的方法之一,将含碳前体在高温高压下直接通过水热反应制备CDs,合成过程简单,且粒径较为均匀,可在一步反应中进行表面修饰,利于大量生产 | 水溶性好,表面官能团丰富,尺寸小,粒径分布均匀,荧光稳定 | [ | |
固相法 | 含碳前体在固相介质中发生反应,反应条件易于控制,能实现高产率制备CDs,避免了合成过程中有机试剂的使用,因此对环境无害,但反应速率难以控制 | 良好的水溶性、光稳定性和高离子强度的稳定性,但粒径分布不均匀 | [ |
类型 | 修饰方法 | 参考文献 | 类型 | 修饰方法 | 参考文献 | |
---|---|---|---|---|---|---|
杂原子掺杂修饰 | N掺杂 | [ | 功能化修饰 | 羟基功能化 | [ | |
S掺杂 | [ | 羧基功能化 | [ | |||
P掺杂 | [ | 醛基功能化 | [ | |||
多原子掺杂 | [ | 多基团功能化 | [ | |||
B掺杂 | [ | 纳米复合修饰 | 金属及金属氧化物复合 | [ | ||
卤素掺杂 | [ | SiO2复合 | [ |
类型 | 修饰方法 | 参考文献 | 类型 | 修饰方法 | 参考文献 | |
---|---|---|---|---|---|---|
杂原子掺杂修饰 | N掺杂 | [ | 功能化修饰 | 羟基功能化 | [ | |
S掺杂 | [ | 羧基功能化 | [ | |||
P掺杂 | [ | 醛基功能化 | [ | |||
多原子掺杂 | [ | 多基团功能化 | [ | |||
B掺杂 | [ | 纳米复合修饰 | 金属及金属氧化物复合 | [ | ||
卤素掺杂 | [ | SiO2复合 | [ |
1 | Deepak KASAI R, RADHIKA Devi, ARCHANA S, et al. A review on hydrogels classification and recent developments in biomedical applications[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72(13): 1059-1069. |
2 | GUO Youhong, Jiwoong BAE, FANG Zhiwei, et al. Hydrogels and hydrogel-derived materials for energy and water sustainability[J]. Chemical Reviews, 2020, 120(15): 7642-7707. |
3 | HUANG Heyuan, DONG Zhicheng, REN Xiaoyang, et al. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications[J]. Nano Research, 2023, 16(2): 3475-3515. |
4 | FOUDAZI Reza, ZOWADA Ryan, Ica MANAS-ZLOCZOWER, et al. Porous hydrogels: Present challenges and future opportunities[J]. Langmuir, 2023, 39(6): 2092-2111. |
5 | Rashmita DAS, BANDYOPADHYAY Rajib, PRAMANIK Panchanan. Carbon quantum dots from natural resource: A review[J]. Materials Today Chemistry, 2018, 8: 96-109. |
6 | MOLAEI Mohammad Jafar. Principles, mechanisms, and application of carbon quantum dots in sensors: A review[J]. Analytical Methods, 2020, 12(10): 1266-1287. |
7 | ZHANG Likang, YANG Xue, YIN Zhifu, et al. A review on carbon quantum dots: Synthesis, photoluminescence mechanisms and applications[J]. Luminescence, 2022, 37(10): 1612-1638. |
8 | KUMAR Pawan, Shweta DUA, KAUR Ravinder, et al. A review on advancements in carbon quantum dots and their application in photovoltaics[J]. RSC Advances, 2022, 12(8): 4714-4759. |
9 | EBHODAGHE Samuel Ogbeide. A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing[J]. Journal of Biomaterials Science Polymer Edition, 2022, 33(12): 1595-1622. |
10 | XU Hong, AN Zehua, ZHANG Haoran, et al. Preparation and characterization of a CDs based hydrogel slow-release fertilizer[J]. Materials Research Bulletin, 2024, 170: 112590. |
11 | CUI Fangchao, XI Liqing, WANG Dangfeng, et al. Advanced in carbon dot-based hydrogels for antibacterial, detection and adsorption[J]. Coordination Chemistry Reviews, 2023, 497: 215457. |
12 | WANG Yijie, Tingjie LYU, YIN Keyang, et al. Carbon dot-based hydrogels: Preparations, properties, and applications[J]. Small, 2023, 19(17): e2207048. |
13 | SUI Bowen, LI Yunfeng, YANG Bai. Nanocomposite hydrogels based on carbon dots and polymers[J]. Chinese Chemical Letters, 2020, 31(6): 1443-1447. |
14 | TIAN Lin, LI Zhao, WANG Peng, et al. Carbon quantum dots for advanced electrocatalysis[J]. Journal of Energy Chemistry, 2021, 55: 279-294. |
15 | RASAL Akash S, YADAV Sudesh, YADAV Anchal, et al. Carbon quantum dots for energy applications: A review[J]. ACS Applied Nano Materials, 2021, 4(7): 6515-6541. |
16 | F-J CHAO-MUJICA, GARCIA-HERNÁNDEZ L, CAMACHO-LÓPEZ S, et al. Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation[J]. Journal of Applied Physics, 2021, 129(16): 163301. |
17 | CUI Lin, REN Xin, WANG Jinggang, et al. Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging[J]. Materials Today Nano, 2020, 12: 100091. |
18 | KAKAEI Karim, KHODADOOST Somayyeh, GHOLIPOUR Maryam, et al. Core-shell polyaniline functionalized carbon quantum dots for supercapacitor[J]. Journal of Physics and Chemistry of Solids, 2021, 148: 109753. |
19 | DA SILVA SOUZA Débora Rosa, CAMINHAS Larissa Durães, DE MESQUITA João Paulo, et al. Luminescent carbon dots obtained from cellulose[J]. Materials Chemistry and Physics, 2018, 203: 148-155. |
20 | Martyna PAJEWSKA-SZMYT, BUSZEWSKI Bogusław, Renata GADZAŁA-KOPCIUCH. Sulphur and nitrogen doped carbon dots synthesis by microwave assisted method as quantitative analytical nano-tool for mercury ion sensing[J]. Materials Chemistry and Physics, 2020, 242: 122484. |
21 | CHERNYAK Sergei, PODGORNOVA Angelina, DOROFEEV Sergey, et al. Synthesis and modification of pristine and nitrogen-doped carbon dots by combining template pyrolysis and oxidation[J]. Applied Surface Science, 2020, 507: 145027. |
22 | LI Dongying, WANG Shuangpeng, AZAD Fahad, et al. Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+ [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110141. |
23 | ZHAO Dan, ZHANG Zhixia, LI Caimao, et al. Yellow-emitting hydrophobic carbon dots via solid-phase synthesis and their applications[J]. ACS Omega, 2020, 5(35): 22587-22595. |
24 | WANG Hao, GAO Peng, WANG Yun, et al. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups[J]. APL Materials, 2015, 3(8): 086102. |
25 | WANG Haolin, AI Lin, SONG Ziqi, et al. Surface modification functionalized carbon dots[J]. Chemistry: A European Journal, 2023, 29(65): e2302383. |
26 | RANGEL Miriam, SALUJA Sarvagya, BARBA V, et al. Dual-emissive waste oil based S-doped carbon dots for acetone detection and Cr(Ⅵ) detection/reduction/removal[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109438. |
27 | CHEN Lanlan, ZHANG Chen, DU Zhongjie, et al. Fabrication of carboxyl group-functionalized carbon quantum dots and its transparent and luminescent epoxy matrix nanocomposites for white LED encapsulation[J]. Macromolecular Materials and Engineering, 2015, 300(12): 1232-1237. |
28 | KALAIYARASAN Gopi, JOSEPH James, KUMAR Pankaj. Phosphorus-doped carbon quantum dots as fluorometric probes for iron detection[J]. ACS Omega, 2020, 5(35): 22278-22288. |
29 | ALAVI Mehran, JABARI Erfan, JABBARI Esmaiel. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: A review[J]. Expert Review of Anti-Infective Therapy, 2021, 19(1): 35-44. |
30 | JIANG Lei, DING Haizhen, LU Siyu, et al. Photoactivated fluorescence enhancement in F,N-doped carbon dots with piezochromic behavior[J]. Angewandte Chemie International Edition, 2020, 59(25): 9986-9991. |
31 | FU Qiang, SUN Shouhong, LU Kangzhi, et al. Boron-doped carbon dots: Doping strategies, performance effects, and applications[J]. Chinese Chemical Letters, 2024, 35(7): 109136. |
32 | HE Yingran, ZHAO Dieling, CHUNG Tai-Shung. Na+ functionalized carbon quantum dot incorporated thin-film nanocomposite membranes for selenium and arsenic removal[J]. Journal of Membrane Science, 2018, 564: 483-491. |
33 | FU Qiang, SUN Shouhong, LI Ning, et al. Based on halogen-doped carbon dots: A review[J]. Materials Today Chemistry, 2023, 34: 101769. |
34 | WU Jun, XIN Wei, WU Yuhan, et al. Solid-state photoluminescent silicone-carbon dots/dendrimer composites for highly efficient luminescent solar concentrators[J]. Chemical Engineering Journal, 2021, 422: 130158. |
35 | HUANG Jianbo, LIU Xin, LI Lijun, et al. Nitrogen-doped carbon quantum dot-anchored hydrogels for visual recognition of dual metal ions through reversible fluorescence response[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(45): 15190-15201. |
36 | 马培林, 张一昆, 宋亚婷, 等. 碳点掺杂复合型水凝胶的制备及其对Fe3+的检测和吸附[J]. 功能材料, 2022, 53(12): 12189-12195, 12214. |
MA Peilin, ZHANG Yikun, SONG Yating, et al. Preparation of carbon dot doped composite hydrogel andits detection and adsorption of Fe3+ [J]. Journal of Functional Materials, 2022, 53(12): 12189-12195, 12214. | |
37 | HAVANUR Sushma, BATISH Inayat, CHERUKU Sri Pragnya, et al. Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice[J]. Materials Science and Engineering C, 2019, 105: 110094. |
38 | YANG Jueying, CHEN Yu, ZHAO Lin, et al. Constructions and properties of physically cross-linked hydrogels based on natural polymers[J]. Polymer Reviews, 2023, 63(3): 574-612. |
39 | CHEN Xueqi, SONG Zihui, YUAN Bingnan, et al. Fluorescent carbon dots crosslinked cellulose Nanofibril/Chitosan interpenetrating hydrogel system for sensitive detection and efficient adsorption of Cu(Ⅱ) and Cr(Ⅵ)[J]. Chemical Engineering Journal, 2022, 430: 133154. |
40 | HU Feng, LU Hailin, XU Guangshen, et al. Carbon quantum dots improve the mechanical behavior of polyvinyl alcohol/polyethylene glycol hydrogel[J]. Journal of Applied Polymer Science, 2022, 139(34): e52805. |
41 | SHEN Chun, ZHAO Yue, LIU Hou, et al. Dynamically crosslinked carbon dots/biopolymer hydrogels exhibiting fluorescence and multi-stimuli logic-gate responses[J]. Polymer Chemistry, 2018, 9(18): 2478-2483. |
42 | Ana MARTÍN-PACHECO, DEL RÍO CASTILLO Antonio Esaú, Cristina MARTÍN, et al. Graphene quantum dot-aerogel: From nanoscopic to macroscopic fluorescent materials. sensing polyaromatic compounds in water[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18192-18201. |
43 | LI Yue, MÄNNEL Max J, HAUCK Nicolas, et al. Embedment of quantum dots and biomolecules in a dipeptide hydrogel formed in situ using microfluidics[J]. Angewandte Chemie International Edition, 2021, 60(12): 6724-6732. |
44 | WANG Jianying, MA Xiaofei, WEI Lai, et al. Construction of high-strength p(HEMA-co-AA) fluorescent hydrogels based on modified carbon dots as chemically crosslinkers[J]. Colloid and Polymer Science, 2018, 296(4): 745-752. |
45 | 杨晓芳, 魏铭, 孙力. 聚丙烯酰胺/碳量子点/氧化石墨烯复合水凝胶制备及其性能分析[J]. 化工进展, 2021, 40(S2): 301-308. |
YANG Xiaofang, WEI Ming, SUN Li. Preparation and performance analysis of polyacrylamide/carbon dots/graphene oxide composite hydrogel[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 301-308. | |
46 | ZHANG Xiao, LUO Shiwen, DUAN Jiaxin, et al. Fabrication of sodium alginate-doped carbon dot composite hydrogel and its application for La(Ⅲ) adsorption and enhanced the removal of phosphorus[J]. Environmental Science and Pollution Research International, 2023, 30(49): 108230-108246. |
47 | 单国荣, 张宁. 氧化石墨烯复合水凝胶研究进展[J]. 化工学报, 2018, 69(2): 535-545. |
SHAN Guorong, ZHANG Ning. Research progress on graphene oxide composite hydrogels[J]. CIESC Journal, 2018, 69(2): 535-545. | |
48 | LI Peili, LIU Shuai, YANG Xu, et al. Low-drug resistance carbon quantum dots decorated injectable self-healing hydrogel with potent antibiofilm property and cutaneous wound healing[J]. Chemical Engineering Journal, 2021, 403: 126387. |
49 | MONIRUZZAMAN Md, DUTTA Sayan Deb, JIN Hexiu, et al. Polyphenol derived bioactive carbon quantum dot-incorporated multifunctional hydrogels as an oxidative stress attenuator for antiaging and in vivo wound-healing applications[J]. Biomaterials Science, 2022, 10(13): 3527-3539. |
50 | KANUNGO Shweta, GUPTA Neeta, RAWAT Reena, et al. Doped carbon quantum dots reinforced hydrogels for sustained delivery of molecular cargo[J]. Journal of Functional Biomaterials, 2023, 14(3): 166. |
51 | TOHAMY Hebat-Allah S. Cellulosic nitrogen doped carbon quantum dots hydrogels with fluorescence/visco-elastic properties for pH- and temperature-sensitivity[J]. Diamond and Related Materials, 2023, 136: 110027. |
52 | LI Chen yu, ZHENG Si yu, DU Cong, et al. Carbon dot/poly(methylacrylic acid) nanocomposite hydrogels with high toughness and strong fluorescence[J]. ACS Applied Polymer Materials, 2020, 2(3): 1043-1052. |
53 | MASSOUDI Solmaz, BAGHERI Massoumeh, HOSSEINI Maryam. Poly(N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogel as an efficient metal ion adsorbent of aqueous systems[J]. Iranian Polymer Journal, 2022, 31(4): 533-551. |
54 | YANG Qin, GAO Dahang, MIAO Ruoyan, et al. Carbon quantum dots and cucurbituril joining hands to achieve luminescence and self-healing performance in a hydrogel[J]. Journal of Materials Science, 2023, 58(4): 1739-1751. |
55 | DATE Pranjali, TANWAR Archana, LADAGE Priyanka, et al. Carbon dots-incorporated pH-responsive agarose-PVA hydrogel nanocomposites for the controlled release of norfloxacin drug[J]. Polymer Bulletin, 2020, 77(10): 5323-5344. |
56 | LUO Qiuyan, REN Tingting, LEI Zihua, et al. Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline[J]. Chemical Engineering Journal, 2022, 427: 131738. |
57 | 赵霄向, 吴永利, 高建平, 等. 含碳点水凝胶荧光试纸的制备及其对Fe3+的检测[J]. 分析科学学报, 2020, 36(1): 33-36. |
ZHAO Xiaoxiang, WU Yongli, GAO Jianping, et al. Synthesis of carbon dots and sodium alginate hydrogel for Fe3+ detection[J]. Journal of Analytical Science, 2020, 36(1): 33-36. | |
58 | MA Changchang, XIE Zhuohong, SEO Won Cheol, et al. Carbon dot-coupled BiVO4/reduced graphene hydrogel for significant enhancement of photocatalytic activity: Antibiotic degradation and CO2 reduction[J]. Applied Surface Science, 2021, 565: 150564. |
59 | WANG Zekun, ZHANG Pu, YIN Chenyang, et al. Antibiotic-derived carbon-nanodot-decorated hydrogel for reactive oxygen species-enhanced anti-infection through biofilm damage[J]. Advanced Functional Materials, 2023, 33(29): 2300341. |
60 | LEE Chang Heon, SONG Seuk Young, CHUNG You Jung, et al. Light-stimulated carbon dot hydrogel: Targeting and clearing infectious bacteria in vivo [J]. ACS Applied Bio Materials, 2022, 5(2): 761-770. |
61 | 孙元娜, 李青山, 赵小亮, 等. 阳离子型纳米胶束凝胶的制备及其对染料的吸附[J]. 印染, 2019, 45(19): 8-11, 18. |
SUN Yuanna, LI Qingshan, ZHAO Xiaoliang, et al. Cationic hydrogels with functionalized nano-micelles as macro-crosslinkers for dye adsorption[J]. China Dyeing & Finishing, 2019, 45(19): 8-11, 18. | |
62 | 熊星滢, 蒲生彦, 马慧, 等. 水凝胶吸附法去除水中重金属离子研究综述[J]. 工业水处理, 2016, 36(5): 1-4, 9. |
XIONG Xingying, PU Shengyan, MA Hui, et al. Review on removal of heavy metal ions from aqueous solution by hydrogel adsorption[J]. Industrial Water Treatment, 2016, 36(5): 1-4, 9. | |
63 | ZHANG Xuefeng, YI Xueqian, OUYANG Jiayu, et al. Chitosan/carbon dots-loaded nanocellulose/layered double hydroxides composite hydrogel for effective detection and removal of iodide ion[J]. Chemical Engineering Journal, 2024, 479: 147753. |
64 | WANG Qun, HAN Tao, MIAO Caiqin, et al. A fluorescent N-doped carbon dot-hydrogel composite for concurrent selective detection and local hot spot promoted adsorption of uranium(vi)[J]. Environmental Science: Water Research & Technology, 2023, 9(10): 2680-2691. |
65 | QI Xinmiao, PENG Junwen, ZHANG Xuefeng, et al. Computer chip-inspired design of nanocellulose/carbon dots hydrogel as superior intensifier of nano-sized photocatalyst for effective Cr(Ⅵ) removal[J]. Journal of Hazardous Materials, 2023, 446: 130689. |
66 | NAYAK Suman, PRASAD Surendra Rajit, MANDAL Debabrata, et al. Carbon dot cross-linked polyvinylpyrrolidone hybrid hydrogel for simultaneous dye adsorption, photodegradation and bacterial elimination from waste water[J]. Journal of Hazardous Materials, 2020, 392: 122287. |
67 | BARZEGARZADEH Mehdi, AMINI-FAZL Mohammad Sadegh, SOHRABI Negin. Ultrasound-assisted adsorption of chlorpyrifos from aqueous solutions using magnetic chitosan/graphene quantum dot-iron oxide nanocomposite hydrogel beads in batch adsorption column and fixed bed[J]. International Journal of Biological Macromolecules, 2023, 242: 124587. |
68 | XIE Shaowen, CHEN Yin, GUO Ziyu, et al. Agar/carbon dot crosslinked polyacrylamide double-network hydrogels with robustness, self-healing, and stimulus-response fluorescence for smart anti-counterfeiting[J]. Materials Chemistry Frontiers, 2021, 5(14): 5418-5428. |
69 | WU Shuangshuang, SHI Huihui, LU Wei, et al. Aggregation-induced emissive carbon dots gels for octopus-inspired shape/color synergistically adjustable actuators[J]. Angewandte Chemie International Edition, 2021, 60(40): 21890-21898. |
70 | YU Yunfei, FENG Yiyu, LIU Feng, et al. Carbon dots-based ultrastretchable and conductive hydrogels for high-performance tactile sensors and self-powered electronic skin[J]. Small, 2023, 19(31): e2204365. |
71 | GOGOI Neelam, BAROOAH Mayuri, MAJUMDAR Gitanjali, et al. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions[J]. ACS Applied Materials & Interfaces, 2015, 7(5): 3058-3067. |
72 | TU Wenjing, WANG Zhenzhen, WU Qingyao, et al. Tree-inspired ultra-rapid steam generation and simultaneous energy harvesting under weak illumination[J]. Journal of Materials Chemistry A, 2020, 8(20): 10260-10268. |
73 | LU Zhenhui, LIU Sijia, LE Yiguan, et al. An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis[J]. Biomaterials, 2019, 218: 119190. |
74 | KURNIAWAN Darwin, MATHEW Jacob, RAHARDJA Michael Ryan, et al. Plasma-enabled graphene quantum dot hydrogels as smart anticancer drug nanocarriers[J]. Small, 2023, 19(20): e2206813. |
75 | KAZEMINAVA Fahimeh, JAVANBAKHT Siamak, NOURI Mohammad, et al. Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing[J]. Journal of Biological Engineering, 2022, 16(1): 36. |
76 | GUO Youhong, Jiwoong BAE, ZHAO Fei, et al. Functional hydrogels for next-generation batteries and supercapacitors[J]. Trends in Chemistry, 2019, 1(3): 335-348. |
77 | 郑紫荣, 王欢. 导电水凝胶材料的制备及其应用研究进展[J]. 现代化工, 2023, 43(9): 66-70, 75. |
ZHENG Zirong, WANG Huan. Advances on preparation and application of conductive hydrogels[J]. Modern Chemical Industry, 2023, 43(9): 66-70, 75. | |
78 | WEI Jishi, SONG Tianbing, ZHANG Peng, et al. Integrating carbon dots with porous hydrogels to produce full carbon electrodes for electric double-layer capacitors[J]. ACS Applied Energy Materials, 2020, 3(7): 6907-6914. |
79 | LI Zhen, WEI Junjie, REN Jing, et al. Hierarchical construction of high-performance all-carbon flexible fiber supercapacitors with graphene hydrogel and nitrogen-doped graphene quantum dots[J]. Carbon, 2019, 154: 410-419. |
80 | Tran Van TAM, KANG Sung Gu, KIM Mun Ho, et al. Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn-air batteries and overall water splitting[J]. Advanced Energy Materials, 2019, 9(26): 1900945. |
81 | ZHAO Dan, MA Wenting, WANG Rong, et al. The preparation of green fluorescence-emissioned carbon dots/poly(N-isopropylacrylamide) temperature-sensitive hydrogels and research on their properties[J]. Polymers, 2019, 11(7): 1171. |
82 | YUE Yiying, GU Jiamin, CHENG Wanli, et al. Solid-liquid convertible hydrogel mediated by dual-functional cellulose nanofiber/Eu-dipicolinic acid/carbon dot complexes for high-precision sequential luminescence detection of cupric ion and oxytetracycline[J]. Composites Science and Technology, 2023, 232: 109854. |
83 | 孙宏刚, 曹皓, 杨建军, 等. 水凝胶海洋防污涂层材料研究进展[J]. 涂料工业, 2023, 53(9): 85-90. |
SUN Honggang, CAO Hao, YANG Jianjun, et al. Recent development of hydrogel antifouling coating materials[J]. Paint & Coatings Industry, 2023, 53(9): 85-90. |
[1] | WAN Lixiang, CUI Jinfeng, GUO Junhong, BAO Xuemei, YANG Baoping. Preparation and properties of polyamic acid-polyurethane block copolymers and thermoimide elastomers [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 398-406. |
[2] | XUE Lixin, TU Longdou, LI Shiyang, ZHENG Chenchen, CAI Dajian, GAO Congjie. High efficient dye desalting mixed matrix nanofiltration membranes containing in-situ grown ZIF-L particles in polyethyleneimine (PEI) coating before interface polymerization [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 431-442. |
[3] | GAO Jixing, DING Yumei, ZHANG Chao, TAN Jing, DING Xi, LI Haoyi, YANG Weimin. Preparation and properties of PLA/PCL micro-nano fiber membrane by melt differential electrospinning [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 457-468. |
[4] | LIU Qingchen, WANG Huawei, LIU Rongwen, ZOU Rongxue, ZHAN Meili, WANG Yanan, SUN Yingjie, XIA Zhengqi, SHAN Bin. Efficiency of coagulation-ozone oxidation on the removal of organic micropollutants from biotreated leachate [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 545-554. |
[5] | CHEN Muhua, JI Zhen, WANG Fang, HUANG Kaijian, FU Bo, LIU Bo, LIU Shaozhong, ZHU Xinbao. Synthesis and properties of cellulose based copolymer polycarboxylate superplasticizer [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 564-570. |
[6] | ZHENG Junyi, LI Ming, ZHU Beihong, SU Chang, GUO Sihan, YU QiLin, ZHANG Yaobin. Intensification of butyric acid fermentation in kitchen waste system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 597-603. |
[7] | SUN Qichao, NIE Meihua, WU Lianying, HU Yangdong. Optimal design and scheduling of integrated wind-photovoltaic-storage hydropower cogeneration system [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4882-4891. |
[8] | HAO Kang’an, ZHOU Ying, LIU Chuan, YU Runhao, HUANG Anrong, WU Chong, ZUO Xiaoling. Recent advances in the construction and encryption properties of fluorescent hydrogel-based information storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5013-5025. |
[9] | LOU Gaobo, YAO Xiaoling, NI Jingwen, FU Shenyuan, LIU Lina. Preparation and properties of two-dimensional mica epoxy resin composite modified by ion complex [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5142-5156. |
[10] | SUN Yan, FENG Qianying, XIE Xiaoyang, HE Jiaojie, YANG Liwei, BAI Bo. Research progress on the cyclodextrin-based thin film composite membranes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4464-4476. |
[11] | ZHENG Yunxiang, GAO Yilun, LI Yanru, LIU Qinglin, ZHANG Haoteng, WANG Xiangpeng. Preparation and adsorption properties of porous double-network hydrogels modified by nitrilotriacetic acid anhydride [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4542-4549. |
[12] | ZHANG Lei, DU Hongying, FENG Wenhao, GUO Junkang. Optimization of interfacial solar photothermal evaporation system based on two-dimensional photothermal materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4571-4586. |
[13] | WU Zhe, QU Shuguang, FENG Lianxiang, ZENG Xiangchu. Adsorption performance and mechanism of sodium alginate/microcrystalline cellulose composite hydrogel for aqueous methyl orange and methylene blue [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4681-4693. |
[14] | LI Xuehua, LEI Guoxuan, LI Yuan, WANG Li, LIAO Yinfei, LI Xiaobing, ZHAO Hui. Hydrodynamic cavitation for exfoliation of carbon dots from coal [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3972-3979. |
[15] | ZHENG Suoqi, ZHAN Lingxiao, CHEN Heng, LI Zhihao, WANG Yurui, ZHAO Ning, WU Hao, YANG Linjun. Hybrid modeling for energy consumption prediction of desulfurization wastewater bypass evaporation system [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2968-2976. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |