Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 7078-7094.DOI: 10.16085/j.issn.1000-6613.2023-2075
• Resources and environmental engineering • Previous Articles
ZENG Xiangchu1,2,3,4(
), NING Haichao1,2,3, WU Zhe1,2,3, WEI Ruisong1,2,3, YIN Xiuju1,2,3(
)
Received:2023-11-28
Revised:2024-03-07
Online:2025-01-11
Published:2024-12-15
Contact:
YIN Xiuju
曾湘楚1,2,3,4(
), 宁海潮1,2,3, 武哲1,2,3, 韦瑞松1,2,3, 银秀菊1,2,3(
)
通讯作者:
银秀菊
作者简介:曾湘楚(1990—),男,博士,讲师,研究方向为环境功能材料。E-mail:xiangchuzeng@163.com。
基金资助:CLC Number:
ZENG Xiangchu, NING Haichao, WU Zhe, WEI Ruisong, YIN Xiuju. Coupled homogeneous/heterogeneous Fenton-like system for enhanced inactivating of tetracycline-resistance Salmonella typhi[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7078-7094.
曾湘楚, 宁海潮, 武哲, 韦瑞松, 银秀菊. 耦合均相-异相类芬顿体系强化水体耐药伤寒沙门氏菌的杀灭[J]. 化工进展, 2024, 43(12): 7078-7094.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2075
| 物质 | 电子能/a.u. | 自由能校正/a. u. | 自由能/a. u. | ||
|---|---|---|---|---|---|
| T=303K | T=353K | T=303K | T=353K | ||
| H2O | -76.3859 | 0.002584 | -0.00118 | -76.3803 | -76.3840 |
| H+ | 0 | -0.01020 | -0.01231 | -0.44141 | -0.44352 |
| Cu-4H2O | -502.587 | 0.067376 | 0.059214 | -502.517 | -502.525 |
| TC | -1602.18 | 0.420748 | 0.405165 | -1601.75 | -1601.77 |
| Mol-1 | -1951.56 | 0.456565 | 0.438817 | -1951.10 | -1951.12 |
| Mol-2 | -1951.98 | 0.466724 | 0.448389 | -1951.51 | -1951.53 |
| Mol-3 | -1951.54 | 0.456971 | 0.439220 | -1951.08 | -1951.10 |
| Mol-4 | -1951.56 | 0.456087 | 0.438193 | -1951.10 | -1951.12 |
| Mol-5 | -1951.53 | 0.452588 | 0.434274 | -1951.08 | -1951.10 |
| 反应式(pH = 6) | ΔG/kcal·mol-1 | ||||
| 303K | 353K | ||||
| Cu-4H2O + TC | -20.76 | -23.05 | |||
| Cu-4H2O + TC | 1.89 | 0.56 | |||
| Cu-4H2O + TC | -8.07 | -10.35 | |||
| Cu-4H2O + TC | -18.60 | -20.98 | |||
| Cu-4H2O + TC → Mol-5 + 2H2O +H+ | -6.28 | -8.93 | |||
| 物质 | 电子能/a.u. | 自由能校正/a. u. | 自由能/a. u. | ||
|---|---|---|---|---|---|
| T=303K | T=353K | T=303K | T=353K | ||
| H2O | -76.3859 | 0.002584 | -0.00118 | -76.3803 | -76.3840 |
| H+ | 0 | -0.01020 | -0.01231 | -0.44141 | -0.44352 |
| Cu-4H2O | -502.587 | 0.067376 | 0.059214 | -502.517 | -502.525 |
| TC | -1602.18 | 0.420748 | 0.405165 | -1601.75 | -1601.77 |
| Mol-1 | -1951.56 | 0.456565 | 0.438817 | -1951.10 | -1951.12 |
| Mol-2 | -1951.98 | 0.466724 | 0.448389 | -1951.51 | -1951.53 |
| Mol-3 | -1951.54 | 0.456971 | 0.439220 | -1951.08 | -1951.10 |
| Mol-4 | -1951.56 | 0.456087 | 0.438193 | -1951.10 | -1951.12 |
| Mol-5 | -1951.53 | 0.452588 | 0.434274 | -1951.08 | -1951.10 |
| 反应式(pH = 6) | ΔG/kcal·mol-1 | ||||
| 303K | 353K | ||||
| Cu-4H2O + TC | -20.76 | -23.05 | |||
| Cu-4H2O + TC | 1.89 | 0.56 | |||
| Cu-4H2O + TC | -8.07 | -10.35 | |||
| Cu-4H2O + TC | -18.60 | -20.98 | |||
| Cu-4H2O + TC → Mol-5 + 2H2O +H+ | -6.28 | -8.93 | |||
| 铜络合物 | δg/a.u. | δginter/a.u. | δgintra/a.u. |
|---|---|---|---|
| Mol-1 | 45.61 | 1.24 | 44.37 |
| Mol-2 | 45.62 | 1.06 | 44.56 |
| Mol-3 | 45.56 | 1.26 | 44.30 |
| Mol-4 | 45.57 | 1.25 | 44.32 |
| Mol-5 | 45.42 | 1.11 | 44.31 |
| 铜络合物 | δg/a.u. | δginter/a.u. | δgintra/a.u. |
|---|---|---|---|
| Mol-1 | 45.61 | 1.24 | 44.37 |
| Mol-2 | 45.62 | 1.06 | 44.56 |
| Mol-3 | 45.56 | 1.26 | 44.30 |
| Mol-4 | 45.57 | 1.25 | 44.32 |
| Mol-5 | 45.42 | 1.11 | 44.31 |
| 炭材料 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 |
|---|---|---|---|
| N/S-MC-600 | 269.58 | 10.09 | 0.15 |
| N/S-MC-800 | 329.79 | 10.06 | 0.21 |
| 炭材料 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 |
|---|---|---|---|
| N/S-MC-600 | 269.58 | 10.09 | 0.15 |
| N/S-MC-800 | 329.79 | 10.06 | 0.21 |
| 元素 | 化学形态 | 质量分数/% |
|---|---|---|
| Fe | Fe2+ | 38.8 |
| Fe3+ | 61.2 | |
| C | sp3-C | 31.6 |
| sp2-C | 17.5 | |
| O | Fe—O | 17.5 |
| C—OH | 31.2 | |
| C=O | 48.1 | |
| C—O—C | 3.1 |
| 元素 | 化学形态 | 质量分数/% |
|---|---|---|
| Fe | Fe2+ | 38.8 |
| Fe3+ | 61.2 | |
| C | sp3-C | 31.6 |
| sp2-C | 17.5 | |
| O | Fe—O | 17.5 |
| C—OH | 31.2 | |
| C=O | 48.1 | |
| C—O—C | 3.1 |
| 1 | LI Jiayi, Ninh PHAM A, DAI Ruobin, et al. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites[J]. Journal of Hazardous Materials, 2020, 392: 122261. |
| 2 | DENG Yanchun, YANG Sa, ZHAO Hongxia, et al. Antibiotics-induced changes in intestinal bacteria result in the sensitivity of honey bee to virus[J]. Environmental Pollution, 2022, 314: 120278. |
| 3 | ZENG Xiangchu, ZHANG Guanghua, ZHU Junfeng, et al. Adsorption of heavy metal ions in water by surface functionalized magnetic composites: A review[J]. Environmental Science: Water Research & Technology, 2022, 8(5): 907-925. |
| 4 | 曾湘楚, 张光华, 张万斌, 等. 希夫碱改性Fe3O4杂化材料的制备与表征[J]. 精细化工, 2021, 38(9): 1791-1797, 1807. |
| ZENG Xiangchu, ZHANG Guanghua, ZHANG Wanbin, et al. Preparation and characterization of Schiff base modified Fe3O4 hybrid material[J]. Fine Chemicals, 2021, 38(9): 1791-1797, 1807. | |
| 5 | ZENG Xiangchu, ZHANG Guanghua, WU Zhe. Preparation and characterization of Schiff-base modified Fe3O4 hybrid material and its selective adsorption for aqueous Hg2+ [J]. Environmental Science and Pollution Research International, 2022, 29(20): 30324-30336. |
| 6 | ZENG Xiangchu, ZHANG Guanghua, LI Xiuling, et al. Selective removal of aqueous Hg2+ by magnetic composites sulfur-containing on the hyper-branched surface: Characterization, performance and mechanism[J]. Journal of Environmental Management, 2023, 325: 116621. |
| 7 | ZENG Xiangchu, ZHANG Guanghua, ZHU Junfeng. Selective adsorption of heavy metals from water by a hyper-branched magnetic composite material: Characterization, performance, and mechanism[J]. Journal of Environmental Management, 2022, 314: 114979. |
| 8 | ZHANG Ting, WU Shuang, LI Ning, et al. Applications of vacancy defect engineering in persulfate activation: Performance and internal mechanism[J]. Journal of Hazardous Materials, 2023, 449: 130971. |
| 9 | ZENG Xiangchu, ZHU Junfeng, ZHANG Guanghua, et al. Molecular-level understanding on complexation-adsorption-degradation during the simultaneous removal of aqueous binary pollutants by magnetic composite aerogels[J]. Chemical Engineering Journal, 2023, 468: 143536. |
| 10 | CHEN Jiabin, ZHOU Xuefei, SUN Peizhe, et al. Complexation enhances Cu(Ⅱ)-activated peroxydisulfate: A novel activation mechanism and Cu(Ⅲ) contribution[J]. Environmental Science & Technology, 2019, 53(20): 11774-11782. |
| 11 | WANG Lihong, XU Haodan, JIANG Ning, et al. Trace cupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu(Ⅲ) being the primary and selective intermediate oxidant[J]. Environmental Science & Technology, 2020, 54(7): 4686-4694. |
| 12 | ZHU Shishu, HUANG Xiaochen, MA Fang, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms[J]. Environmental Science & Technology, 2018, 52(15): 8649-8658. |
| 13 | DUAN Ran, MA Shuanglong, XU Shengjun, et al. Soybean straw biochar activating peroxydisulfate to simultaneously eliminate tetracycline and tetracycline resistance bacteria: Insights on the mechanism[J]. Water Research, 2022, 218: 118489. |
| 14 | FU Cheng, SUN Guowei, YIN Guofeng, et al. P/N co-doped carbon sheet for peroxymonosulfate activation: Edge sites enhanced adsorption and subsequent electron transfer[J]. Separation and Purification Technology, 2022, 292: 120922. |
| 15 | SUN Ping, LIU Hui, FENG Mingbao, et al. Strategic combination of N-doped graphene and g-C3N4: Efficient catalytic peroxymonosulfate-based oxidation of organic pollutants by non-radical-dominated processes[J]. Applied Catalysis B: Environmental, 2020, 272: 119005. |
| 16 | PANG Kangfeng, SUN Wei, YE Feng, et al. Sulfur-modified chitosan derived N, S-co-doped carbon as a bifunctional material for adsorption and catalytic degradation sulfamethoxazole by persulfate[J]. Journal of Hazardous Materials, 2022, 424: 127270. |
| 17 | ZHU Ke, SHEN Yaqian, HOU Junming, et al. One-step synthesis of nitrogen and sulfur co-doped mesoporous graphite-like carbon nanosheets as a bifunctional material for tetracycline removal via adsorption and catalytic degradation processes: Performance and mechanism[J]. Chemical Engineering Journal, 2021, 412: 128521. |
| 18 | HE Dongdong, ZHU Ke, HUANG Jin, et al. N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline: Synergistic effect and mechanism[J]. Journal of Hazardous Materials, 2022, 424: 127569. |
| 19 | QU Jianhua, SHI Jiajia, WANG Yihui, et al. Applications of functionalized magnetic biochar in environmental remediation: A review[J]. Journal of Hazardous Materials, 2022, 434: 128841. |
| 20 | FANG Qianzhen, YE Shujing, YANG Hailan, et al. Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook[J]. Journal of Hazardous Materials, 2021, 420: 126569. |
| 21 | ZENG Xiangchu, ZHANG Guanghua, WEN Jia, et al. Simultaneous removal of aqueous same ionic type heavy metals and dyes by a magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite: Performance, interaction and mechanism[J]. Chemosphere, 2023, 318: 137869. |
| 22 | CHEN Bo, YUE Wenli, ZHAO Huinan, et al. Simultaneous capture of methyl orange and chromium(Ⅵ) from complex wastewater using polyethylenimine cation decorated magnetic carbon nanotubes as a recyclable adsorbent[J]. RSC Advances, 2019, 9(9): 4722-4734. |
| 23 | LU Wenhui, LI Jinhua, SHENG Yanqing, et al. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(Ⅵ) from aqueous solution[J]. Journal of Colloid and Interface Science, 2017, 505: 1134-1146. |
| 24 | GUO Furong, WANG Kangjie, LU Jiahua, et al. Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals[J]. Chemosphere, 2019, 218: 1071-1081. |
| 25 | KORDE Sanjiwani, TANDEKAR Swati, JEYASEELAN Christine, et al. Mesoporous magnetic chitosan-zirconia-iron oxide nanocomposite for adsorptive removal of Cr(Ⅵ) ions[J]. Materials Letters, 2022, 311: 131513. |
| 26 | LIU Yuyan, SOHI Saran P, LIU Siyuan, et al. Adsorption and reductive degradation of Cr(Ⅵ) and TCE by a simply synthesized zero valent iron magnetic biochar[J]. Journal of Environmental Management, 2019, 235: 276-281. |
| 27 | 彭程, 徐漪琳, 石钰婧, 等. 生物炭改性及其对除草剂污染水体和土壤修复的研究进展[J]. 化工进展, 2024, 43(2): 1069-1081. |
| PENG Cheng, XU Yilin, SHI Yujing, et al. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081. | |
| 28 | GUO Yong, YAN Congcong, WANG Peifang, et al. Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution[J]. Chemical Engineering Journal, 2020, 387: 124136. |
| 29 | 周春地, 阳婷, 闵熙泽, 等. 零价铁、铜改性生物炭及其对Cr(Ⅵ)吸附性能的影响[J]. 化工进展, 2020, 39(10): 4275-4282. |
| ZHOU Chundi, YANG Ting, MIN Xize, et al. Influence of zero valent iron and copper modified biochar on Cr(Ⅵ) adsorption[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4275-4282. | |
| 30 | MA Yongfei, LI Ming, LI Ping, et al. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal[J]. Bioresource Technology, 2021, 319: 124199. |
| 31 | WEI Yan, MIAO Jie, GE Jianxin, et al. Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(Ⅲ) formation and preferential electron transfer during degradation of phenols[J]. Environmental Science & Technology, 2022, 56(12): 8984-8992. |
| 32 | 武哲, 曲树光, 曾湘楚, 等. 海藻酸钠/微晶纤维素复合水凝胶对水中甲基橙和亚甲基蓝的吸附性能与机理[J]. 化工进展, 2024, 43(8): 4681-4693. |
| WU Zhe, QU Shuguang, ZENG Xiangchu, et al. Adsorption performance and mechanism of sodium alginate/microcrystalline cellulose composite hydrogel for aqueous methyl orange and methylene blue[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4681-4693. | |
| 33 | CHEN Cheng, MA Tengfei, SHANG Yanan, et al. In-situ pyrolysis of Enteromorpha as carbocatalyst for catalytic removal of organic contaminants: Considering the intrinsic N/Fe in Enteromorpha and non-radical reaction[J]. Applied Catalysis B: Environmental, 2019, 250: 382-395. |
| 34 | YANG Yuxiao, ZHU Junfeng, ZENG Qingzhu, et al. Enhanced activation of peroxydisulfate by regulating pyrolysis temperature of biochar supported nZVI for the degradation of oxytetracycline[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 145: 104775. |
| 35 | YAO Yunjin, LIAN Chao, WU Guodong, et al. Synthesis of “sea urchin” -like carbon nanotubes/porous carbon superstructures derived from waste biomass for treatment of various contaminants[J]. Applied Catalysis B: Environmental, 2017, 219: 563-571. |
| 36 | 曾湘楚, 黄红诚, 宋华, 等. 聚乙烯亚胺改性壳聚糖气凝胶对Cr(Ⅵ)和Cu(Ⅱ)的吸附及机理[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 47-58. |
| ZENG Xiangchu, HUANG Hongcheng, SONG Hua, et al. Adsorption and mechanism of Cr(Ⅵ) and Cu(Ⅱ) by polyethyleneimine modified chitosan aerogel[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 47-58. | |
| 37 | LIU Fuyang, HOU Yanghui, WANG Shuai, et al. Periodate activation by pyrite for the disinfection of antibiotic-resistant bacteria: Performance and mechanisms[J]. Water Research, 2023, 230: 119508. |
| 38 | AHMED Yunus, ZHONG Jiexi, YUAN Zhiguo, et al. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process[J]. Water Research, 2021, 197: 117075. |
| 39 | SERNA-GALVIS Efraím A, Estefanía VÉLEZ-PEÑA, Paula OSORIO-VARGAS, et al. Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate[J]. Water Research, 2019, 161: 354-363. |
| 40 | YANG Yuxiao, ZHU Junfeng, ZENG Qingzhu, et al. Activation of persulfate by iron-loaded soybean straw biochar for efficient degradation of dye contaminants: Synthesis, performance, and mechanism[J]. Environmental Progress & Sustainable Energy, 2023, 42(5): e14190. |
| 41 | YANG Xiaobing, ZENG Xiangchu, CHEN Hanchun, et al. Coupled homogeneous/heterogeneous Fenton-like system to enhance the synchronized decontamination of aqueous tetracycline and Salmonella typhi[J]. Chemical Engineering Journal, 2024, 483: 148697. |
| 42 | 曾湘楚, 莫镇榕, 银秀菊, 等. N/S共掺杂磁性生物炭对水体Cu(Ⅱ)和四环素的协同吸附机制[J]. 化工进展, 2024,43(8): 4681-4693. |
| ZENG Xiangchu, MO Zhenrong, YIN Xiuju, et al. Synergistic adsorption mechanism of aqueous Cu(Ⅱ) and TC by N/S co-doped biochar[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4681-4693. |
| [1] | LI Yanan, GUO Kai, WANG Jiaqi, WU Yaning. Comparison of phenol degradation by persulfate and peroxymonosulfate activated with coal gasification slag [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3503-3512. |
| [2] | XU Qin, WANG Baoguo. Recent progress on carbon-based electrocatalysts for hydrogen peroxide production via two-electron oxygen reduction reaction [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6155-6172. |
| [3] | MA Chao, SUN Zhihua, WANG Lei, JI Yu, CHEN Cuizhong, WANG Jiankang, ZHAO Chun. Degradation of reactive yellow K-RN by electricity/potassium permanganate/peroxymonosulfate system and its mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5958-5968. |
| [4] | JI Qinghao, FAN Tingting, WANG Chunmei. Preparation and photocatalytic decolorization performance of MIL-100(FeⅡ/FeⅢ)/ACF composites [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5913-5921. |
| [5] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
| [6] | PAN Jie, WANG Mingxin, GAO Shengwang, XIA Xunfeng, HAN Xue. Nitrogen-sulfur doped biochar/permonosulfate for degradation of sulfisoxazole in water [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4204-4212. |
| [7] | ZHEN Jianzheng, NIE Shisong, PAN Shiyuan, LYU Weiyang, YAO Yuyuan. Research progress on advanced activation of peroxymonosulfate by multidimensional carbon-supported metal catalyst for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1858-1872. |
| [8] | XU Zetao, CAO Yiting, WANG Qiao, WANG Zhihong. Research progress of peroxymonosulfate activated by solid-phase cobalt-based catalyst in water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 730-739. |
| [9] | LYU Xiaoqi, LI Hong, ZHAO Zhenyu, LI Xingang, GAO Xin, FAN Xiaolei. Microwave-assisted carbon-based catalysts for fructose dehydration to 5-hydroxymethylfurfural [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 637-647. |
| [10] | LYU Peng, HE Changfan, HE Lin, LI Xingang, SUI Hong. Degradation characteristics and enhancement mechanism of heavy oily sludge by heterogeneous oxidation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6149-6157. |
| [11] | XUE Yuwei, YE Xiaozhen, ZENG Jing, WANG Yongquan, HONG Junming. Pretreatment of tobacco sugar flavoring wastewater by nano layered iron-manganese bimetallic catalysts activating peroxymonosulfate [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5661-5668. |
| [12] | KONG Weijie, YANG Chunliang, BU Tingting, ZHOU Jinbo. Status of propane oxidative dehydrogenation catalysts in carbon-based and boron-based catalytic system [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 223-230. |
| [13] | SUN Jinlong, ZHANG Yu, LIU Fuyue, TIAN Haoran, LIU Qifeng. Research progress in degradation of organic pollutants by activation of persulfates with carbon-based catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1653-1666. |
| [14] | Yuqing ZHANG, Xiulan SONG, Pei BI. Effects of pH on the production of short-chain fatty acids from waste activated sludge enhanced by potassium peroxymonosulfate [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3786-3793. |
| [15] | Jie XU, Shiqian GAO, Jing XIA, Ke ZHANG, Zichun SHAO, Lanjing WANG, Yongjing TIAN. Activatoin of peroxymonosulfate by Sr-doped LaCo0.5Cu0.5O3 perovskite [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3525-3534. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |