Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 7067-7077.DOI: 10.16085/j.issn.1000-6613.2023-2053
• Resources and environmental engineering • Previous Articles
ZHAO Yueqi1(
), WANG Yaqin2, ZHANG Chen1, CHEN Zhou2,3, GAO Xiangpeng1, LI Mingyang1(
)
Received:2023-11-24
Revised:2024-02-02
Online:2025-01-11
Published:2024-12-15
Contact:
LI Mingyang
赵玥琪1(
), 王亚琴2, 张晨1, 陈洲2,3, 高翔鹏1, 李明阳1(
)
通讯作者:
李明阳
作者简介:赵玥琪(2000—),女,硕士研究生,研究方向为固废资源化利用。E-mail:1227421139@qq.com。
基金资助:CLC Number:
ZHAO Yueqi, WANG Yaqin, ZHANG Chen, CHEN Zhou, GAO Xiangpeng, LI Mingyang. Preparation and microstructure analysis of iron tailings/fly ash based geopolymer[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7067-7077.
赵玥琪, 王亚琴, 张晨, 陈洲, 高翔鹏, 李明阳. 铁尾矿/粉煤灰基地质聚合物的制备及微观结构分析[J]. 化工进展, 2024, 43(12): 7067-7077.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2053
| 成分 | IOT | FA |
|---|---|---|
| SiO2 | 40.1 | 46.24 |
| Al2O3 | 11.63 | 38.08 |
| Fe2O3 | 15.08 | 3.20 |
| CaO | 9.87 | 4.30 |
| MgO | 14.78 | 0.86 |
| K2O | 3.05 | 1.08 |
| P2O5 | 2.91 | 0.63 |
| Na2O | 0.51 | 0.73 |
| TiO2 | 0.54 | 1.56 |
| SO3 | 0.70 | 2.16 |
| 其他 | 0.83 | 1.16 |
| 成分 | IOT | FA |
|---|---|---|
| SiO2 | 40.1 | 46.24 |
| Al2O3 | 11.63 | 38.08 |
| Fe2O3 | 15.08 | 3.20 |
| CaO | 9.87 | 4.30 |
| MgO | 14.78 | 0.86 |
| K2O | 3.05 | 1.08 |
| P2O5 | 2.91 | 0.63 |
| Na2O | 0.51 | 0.73 |
| TiO2 | 0.54 | 1.56 |
| SO3 | 0.70 | 2.16 |
| 其他 | 0.83 | 1.16 |
| 水平 | 影响因素 | |||
|---|---|---|---|---|
| 碱激发剂模数(A) | n(Na2O)/n(Al2O3)(B) | 液固比(C) | 固化温度(D)/℃ | |
| 1 | 1.1 | 0.7 | 0.3 | 45 |
| 2 | 1.2 | 0.8 | 0.35 | 55 |
| 3 | 1.3 | 0.9 | 0.4 | 65 |
| 水平 | 影响因素 | |||
|---|---|---|---|---|
| 碱激发剂模数(A) | n(Na2O)/n(Al2O3)(B) | 液固比(C) | 固化温度(D)/℃ | |
| 1 | 1.1 | 0.7 | 0.3 | 45 |
| 2 | 1.2 | 0.8 | 0.35 | 55 |
| 3 | 1.3 | 0.9 | 0.4 | 65 |
| 正交 实验组 | 影响因素 | 抗压强度 /MPa | |||
|---|---|---|---|---|---|
| 碱激发剂模数(A) | n(Na2O)/n(Al2O3)(B) | 液固比(C) | 固化温度(D)/℃ | ||
| IGF-1 | 1.1 | 0.7 | 0.3 | 45 | 16.7 |
| IGF-2 | 1.1 | 0.8 | 0.35 | 55 | 20.07 |
| IGF-3 | 1.1 | 0.9 | 0.4 | 65 | 20.3 |
| IGF-4 | 1.2 | 0.7 | 0.35 | 65 | 18.92 |
| IGF-5 | 1.2 | 0.8 | 0.4 | 45 | 9.8 |
| IGF-6 | 1.2 | 0.9 | 0.3 | 55 | 16.1 |
| IGF-7 | 1.3 | 0.7 | 0.4 | 55 | 12.5 |
| IGF-8 | 1.3 | 0.8 | 0.3 | 65 | 22.5 |
| IGF-9 | 1.3 | 0.9 | 0.35 | 45 | 6.7 |
| 正交 实验组 | 影响因素 | 抗压强度 /MPa | |||
|---|---|---|---|---|---|
| 碱激发剂模数(A) | n(Na2O)/n(Al2O3)(B) | 液固比(C) | 固化温度(D)/℃ | ||
| IGF-1 | 1.1 | 0.7 | 0.3 | 45 | 16.7 |
| IGF-2 | 1.1 | 0.8 | 0.35 | 55 | 20.07 |
| IGF-3 | 1.1 | 0.9 | 0.4 | 65 | 20.3 |
| IGF-4 | 1.2 | 0.7 | 0.35 | 65 | 18.92 |
| IGF-5 | 1.2 | 0.8 | 0.4 | 45 | 9.8 |
| IGF-6 | 1.2 | 0.9 | 0.3 | 55 | 16.1 |
| IGF-7 | 1.3 | 0.7 | 0.4 | 55 | 12.5 |
| IGF-8 | 1.3 | 0.8 | 0.3 | 65 | 22.5 |
| IGF-9 | 1.3 | 0.9 | 0.35 | 45 | 6.7 |
| 水平数 | 抗压强度平均值/MPa | |||
|---|---|---|---|---|
| 碱激发剂模数 | n(Na2O)/n(Al2O3) | 液固比 | 固化温度 | |
| 1 | 19.023 | 16.040 | 18.433 | 11.067 |
| 2 | 14.940 | 17.457 | 15.230 | 16.233 |
| 3 | 13.900 | 14.367 | 14.200 | 20.573 |
| 极差R | 5.123 | 3.090 | 4.233 | 9.506 |
| 水平数 | 抗压强度平均值/MPa | |||
|---|---|---|---|---|
| 碱激发剂模数 | n(Na2O)/n(Al2O3) | 液固比 | 固化温度 | |
| 1 | 19.023 | 16.040 | 18.433 | 11.067 |
| 2 | 14.940 | 17.457 | 15.230 | 16.233 |
| 3 | 13.900 | 14.367 | 14.200 | 20.573 |
| 极差R | 5.123 | 3.090 | 4.233 | 9.506 |
| 因素 | 方差 | 自由度 | F |
|---|---|---|---|
| 碱激发剂模数 | 44.004 | 2 | 0.788 |
| n(Na2O)/n(Al2O3) | 14.355 | 2 | 0.257 |
| 液固比 | 29.243 | 2 | 0.523 |
| 固化温度/℃ | 135.890 | 2 | 2.432 |
| 误差 | 223.49 | 8 |
| 因素 | 方差 | 自由度 | F |
|---|---|---|---|
| 碱激发剂模数 | 44.004 | 2 | 0.788 |
| n(Na2O)/n(Al2O3) | 14.355 | 2 | 0.257 |
| 液固比 | 29.243 | 2 | 0.523 |
| 固化温度/℃ | 135.890 | 2 | 2.432 |
| 误差 | 223.49 | 8 |
| 1 | TANG Liang, LIU Xuemin, WANG Xueqiu, et al. Statistical analysis of tailings ponds in China[J]. Journal of Geochemical Exploration, 2020, 216: 106579. |
| 2 | GUO Penghui, ZHAO Zekun, LI Yongkui, et al. Co-utilization of iron ore tailings and coal fly ash for porous ceramsite preparation: Optimization, mechanism, and assessment[J]. Journal of Environmental Management, 2023, 348: 119273. |
| 3 | ZHANG Yiyue, WANG Fei, HUDSON-EDWARDS Karen A, et al. Characterization of mining-related aromatic contaminants in active and abandoned metal (loid) tailings ponds[J]. Environmental Science & Technology, 2020, 54(23): 15097-15107. |
| 4 | WEI Ziyao, JIA Yanshun, WANG Shaoquan, et al. Utilization of iron ore tailing as an alternative mineral filler in asphalt mastic: High-temperature performance and environmental aspects[J]. Journal of Cleaner Production, 2022, 335: 130318. |
| 5 | FENNELL Jon, ARCISZEWSKI Tim J. Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta[J]. Science of the Total Environment, 2019, 686: 968-985. |
| 6 | JING Jianfa, GUO Yufeng, WANG Shuai, et al. Chromium and iron recovery from hazardous extracted vanadium tailings via direct reduction magnetic separation[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110047. |
| 7 | GENG Huanhuan, WANG Fei, YAN Changchun, et al. Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids[J]. Journal of Hazardous Materials, 2020, 383: 121136. |
| 8 | YAO Geng, WANG Qiang, WANG Zhiming, et al. Activation of hydration properties of iron ore tailings and their application as supplementary cementitious materials in cement[J]. Powder Technology, 2020, 360: 863-871. |
| 9 | LU Chang, YANG Huaming, WANG Jie, et al. Utilization of iron tailings to prepare high-surface area mesoporous silica materials[J]. Science of the Total Environment, 2020, 736: 139483. |
| 10 | Xingdong LYU, SHEN Weiguo, WANG Lei, et al. A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation[J]. Journal of Cleaner Production, 2019, 211: 704-715. |
| 11 | 魏铭, 张长森, 王旭, 等. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 250-259. |
| WEI Ming, ZHANG Changsen, WANG Xu, et al. Alkali-activated materials modified with micro-nano additives: A review[J]. Material Introduction, 2023,37 (4): 250-259. | |
| 12 | KRISHNA R S, SHAIKH Faiz, MISHRA Jyotirmoy, et al. Mine tailings-based geopolymers: Properties, applications and industrial prospects[J]. Ceramics International, 2021, 47(13): 17826-17843. |
| 13 | ZHAO Jihui, TONG Liangyu, LI Boen, et al. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment[J]. Journal of Cleaner Production, 2021, 307: 127085. |
| 14 | HAJIZADEH Zoleikha, RADINEKIYAN Fateme, Reza EIVAZZADEH-KEIHAN, et al. Development of novel and green NiFe2O4/geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations[J]. Scientific Reports, 2020, 10(1): 11671. |
| 15 | WANG Chao, XU Guogang, GU Xinyue, et al. High value-added applications of coal fly ash in the form of porous materials: A review[J]. Ceramics International, 2021, 47(16): 22302-22315. |
| 16 | KLIMA K M, SCHOLLBACH K, BROUWERS H J H, et al. Thermal and fire resistance of Class F fly ash based geopolymers—A review[J]. Construction and Building Materials, 2022, 323: 126529. |
| 17 | DE CARVALHO Aldo Ribeiro, DA SILVA CALDERÓN-MORALES Bianca Rafaela, BORBA José Carlos, et al. Proposition of geopolymers obtained through the acid activation of iron ore tailings with phosphoric acid[J]. Construction and Building Materials, 2023, 403: 133078. |
| 18 | WANG Aiguo, ZHENG Yi, ZHANG Zuhua, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: A review[J]. Engineering, 2020, 6(6): 695-706. |
| 19 | 匡敬忠, 朱陆平, 司加保, 等. 钨尾矿机械-化学活化及其与水泥水化反应机理[J]. 材料导报, 2021, 35(13): 13018-13024. |
| KUANG Jingzhong, ZHU Luping, SI Jiabao, et al. Mechanochemistry activation for tungsten tailings and hydration reaction mechanism with cement[J]. Materials Reports, 2021,35(13): 13018-13024. | |
| 20 | ZHANG Xiaolong, ZHANG Shiyu, LIU Hui, et al. Disposal of mine tailings via geopolymerization[J]. Journal of Cleaner Production, 2021, 284: 124756. |
| 21 | TOME Sylvain, BEWA Christelle N, NANA Achile, et al. Structural and physico-mechanical investigations of mine tailing-calcined kaolinite based phosphate geopolymer binder[J]. Silicon, 2022,14(7): 3563-3570. |
| 22 | FERREIRA Igor Crego, Roberto GALÉRY, HENRIQUES Andréia Bicalho, et al. Reuse of iron ore tailings for production of metakaolin-based geopolymers[J]. Journal of Materials Research and Technology, 2022, 18: 4194-4200. |
| 23 | HAN Fanghui, LI Li, SONG Shaomin, et al. Early-age hydration characteristics of composite binder containing iron tailing powder[J]. Powder Technology, 2017, 315: 322-331. |
| 24 | FIGUEIREDO Ricardo A M, SILVEIRA Ana B M, MELO Eduardo L P, et al. Mechanical and chemical analysis of one-part geopolymers synthesised with iron ore tailings from Brazil[J]. Journal of Materials Research and Technology, 2021, 14: 2650-2657. |
| 25 | GUO Bin, PAN De’an, LIU Bo, et al. Immobilization mechanism of Pb in fly ash-based geopolymer[J]. Construction and Building Materials, 2017, 134: 123-130. |
| 26 | QIAN Xin, YANG Heng, WANG Jialai, et al. Nanosilica in-situ produced with sodium silicate as a performance enhancing additive for concretes[J]. Cement and Concrete Composites, 2023, 142: 105198. |
| 27 | SUN Zengqing, VOLLPRACHT Anya. Leaching of monolithic geopolymer mortars[J]. Cement and Concrete Research, 2020, 136: 106161. |
| 28 | SAEDI Alieh, Ahmad JAMSHIDI-ZANJANI, DARBAN Ahmad Khodadadi. A review on different methods of activating tailings to improve their cementitious property as cemented paste and reusability[J]. Journal of Environmental Management, 2020, 270:110881. |
| 29 | TIAN Lingyu, HE Dongpo, ZHAO Jianing, et al. Durability of geopolymers and geopolymer concretes: A review[J]. Reviews on Advanced Materials Science, 2021, 60(1): 1-14. |
| 30 | GADO R A, HEBDA Marek, Michal ŁACH, et al. Alkali activation of waste clay bricks: Influence of the silica modulus, SiO2/Na2O, H2O/Na2O molar ratio, and liquid/solid ratio[J]. Materials, 2020, 13(2): 383. |
| 31 | DO CARMO E SILVA DEFÁVERI Keoma, DOS SANTOS Letícia Figueiredo, FRANCO DE CARVALHO José Maria, et al. Iron ore tailing-based geopolymer containing glass wool residue: A study of mechanical and microstructural properties[J]. Construction and Building Materials, 2019, 220: 375-385. |
| 32 | SHI Zhenguo, SHI Caijun, WAN Shu, et al. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars[J]. Cement and Concrete Research, 2018, 111: 104-115. |
| 33 | LEONG Hsiao Yun, Dominic Ek Leong ONG, SANJAYAN Jay G, et al. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer[J]. Construction and Building Materials, 2016, 106: 500-511. |
| 34 | CHEN Haohua, Arash NIKVAR-HASSANI, ORMSBY Stefka, et al. Mechanical and microstructural investigations on the low-reactive copper mine tailing-based geopolymer activated by phosphoric acid[J]. Construction and Building Materials, 2023, 393: 132030. |
| 35 | LIN Hui, LIU Hui, LI Yue, et al. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures[J]. Cement and Concrete Research, 2021, 144: 106425. |
| 36 | 沙东, 王宝民, 潘宝峰, 等.地质聚合物强化增韧方法研究综述[J].复合材料学报, 2024, 41(3): 1215-1225. |
| SHA Dong, WANG Baoming, PAN Baofeng, et al. A Review on reinforcing and toughening methods of geopolymers[J]. Journal of Composite Materials, 2024, 41(3): 1215-1225. | |
| 37 | RATHEE Manali, MISRA Anurag, KOLLEBOYINA Jayaramulu, et al. Study of mechanical properties of geopolymer mortar prepared with fly ash and GGBS[J]. Materials Today: Proceedings, 2023, 93: 377-386. |
| 38 | REN Quanming, LI Xiaozhao, JI Yukun, et al. Thermal insulation of phenolic resin modified fly ash geopolymer[J]. Construction and Building Materials, 2023, 409: 133840. |
| 39 | HAJIMOHAMMADI Ailar, Tuan NGO, VONGSVIVUT Jitraporn. Interfacial chemistry of a fly ash geopolymer and aggregates[J]. Journal of Cleaner Production, 2019, 231: 980-989. |
| 40 | MOHAMMED Bashar S, HARUNA Sani, WAHAB M M A, et al. Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator[J]. Heliyon, 2019, 5(9): e02255. |
| 41 | LI Yong, LIU Xiaoming, LI Zepeng, et al. Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials[J]. Journal of Cleaner Production, 2021, 284: 124777. |
| [1] | KONG Xiangrui, DONG Yuecen, ZHANG Mengyu, WANG Biao, YIN Shui′e, CHEN Bing, LU Jiawei, ZHANG Yuan, FENG Lele, WANG Hongtao, XU Haiyun. Treatment technologies of fly ash from municipal solid waste incineration [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4102-4117. |
| [2] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
| [3] | LIU Zhaoyang, JIA Guotao, ZHU Zhizhong, YIN Quanyu, FU Hongzhe, ZHAO Xiangyu, LI Dingjun, YANG Xinling, ZHANG Mingyue. Technological conditions and optimization of near-critical water treatment of waste tobacco leaves [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1720-1730. |
| [4] | ZHENG Yu, LI Jingjie, ZHANG Yufeng, ZHAO Mengqi, ZHANG Na, ZHOU Ao, YU Wei, TAN Houzhang, WANG Xuebin. Heavy metal leaching toxicity of typical grate furnace/fluidized bed furnace waste incineration fly ash and their chelated products [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1630-1636. |
| [5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
| [6] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
| [7] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
| [8] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
| [9] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
| [10] | LI Weihua, WU Yinkai, SUN Yingjie, YIN Junquan, XIN Mingxue, ZHAO Youjie. Progress on evaluation methods for toxic leaching of heavy metals from MSW incineration fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2666-2677. |
| [11] | XU Yuzhen, JIANG Dahua, LIU Jingtao, CHEN Pu. Preparation and properties of fly ash based phase change energy storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2595-2605. |
| [12] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
| [13] | GU Kai, WU Yinkai, YIN Junquan, LI Weihua, SUN Yingjie, ZHANG Qingjian, GE Yanchen, HE Yiyang, ZHAO Lingyan, WANG Huawei. Leaching behavior of heavy metals in solidified/stabilized fly ash under diversified leaching scenarios [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6113-6125. |
| [14] | LI Xiuping, YU Yang, HE Wang, LYU Junhui. High-gravity intensified decarburization process and apparent kinetics of AMP-PZ composite solution [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 22-28. |
| [15] | FU Shuangcheng, CAO Gang, CHEN Qiangfei, SUN Xiaorun, OU Guofu, ZHOU Faqi, LI Luyu. Analysis of fly ash deposition blockage mechanism and structure optimization of low temperature economizer [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4035-4046. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |