Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6563-6572.DOI: 10.16085/j.issn.1000-6613.2023-1875
• Resources and environmental engineering • Previous Articles
MENG Xingyu1,2(), ZONG Yuhang1, ZHANG Xihua1(), YAN Wenyi2(), SUN Zhi2
Received:
2023-10-24
Revised:
2024-04-09
Online:
2024-12-07
Published:
2024-11-15
Contact:
ZHANG Xihua, YAN Wenyi
孟星宇1,2(), 宗宇航1, 张西华1(), 阎文艺2(), 孙峙2
通讯作者:
张西华,阎文艺
作者简介:
孟星宇(1997—),女,硕士研究生,研究方向为关键金属物质流分析。E-mail:1802845324@qq.com。
基金资助:
CLC Number:
MENG Xingyu, ZONG Yuhang, ZHANG Xihua, YAN Wenyi, SUN Zhi. Analysis on material flows and carbon emissions of nickel resources in China[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6563-6572.
孟星宇, 宗宇航, 张西华, 阎文艺, 孙峙. 中国镍资源物质流动与碳排放分析[J]. 化工进展, 2024, 43(11): 6563-6572.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1875
阶段 | 名称 | 镍(质量分数)/% | 损失率/% |
---|---|---|---|
采选 | 红土镍矿 | 1~2 | — |
硫化镍矿 | 1.5 | — | |
镍精矿 | 7~10 | — | |
冶炼 | 镍铁 | 5~15 | — |
镍盐 | 21.8~34.2 | — | |
精炼镍 | 99.96 | — | |
产品制造 | 不锈钢 | — | 0.5 |
电池 | — | 0.5 | |
电镀材料 | — | 3 | |
合金铸件 | — | 0.5 | |
其他 | — | 0.5 | |
终端应用 | — | — | <0.5 |
阶段 | 名称 | 镍(质量分数)/% | 损失率/% |
---|---|---|---|
采选 | 红土镍矿 | 1~2 | — |
硫化镍矿 | 1.5 | — | |
镍精矿 | 7~10 | — | |
冶炼 | 镍铁 | 5~15 | — |
镍盐 | 21.8~34.2 | — | |
精炼镍 | 99.96 | — | |
产品制造 | 不锈钢 | — | 0.5 |
电池 | — | 0.5 | |
电镀材料 | — | 3 | |
合金铸件 | — | 0.5 | |
其他 | — | 0.5 | |
终端应用 | — | — | <0.5 |
原料 | 工序 | 产品 | 工序能耗/kgce·t-1 | 质量分数/% |
---|---|---|---|---|
硫化镍矿 | 熔炼 | 高镍硫 | 2371 | 35 |
精炼 | 精炼镍 | 1550 | 99.96 | |
红土镍矿 | 烧结 | 烧结矿 | 150 | 1.6 |
高炉 | 低镍铁 | 650 | 1.6 | |
矿热炉 | 高镍铁 | 2200 | 8 | |
硫化镍矿 | 火法冶炼 | 硫酸镍 | 3731 | — |
红土镍矿 | 湿法冶炼 | 硫酸镍 | 7150 | — |
镍铁 | 转产高冰镍 | 硫酸镍 | 22300 | — |
原料 | 工序 | 产品 | 工序能耗/kgce·t-1 | 质量分数/% |
---|---|---|---|---|
硫化镍矿 | 熔炼 | 高镍硫 | 2371 | 35 |
精炼 | 精炼镍 | 1550 | 99.96 | |
红土镍矿 | 烧结 | 烧结矿 | 150 | 1.6 |
高炉 | 低镍铁 | 650 | 1.6 | |
矿热炉 | 高镍铁 | 2200 | 8 | |
硫化镍矿 | 火法冶炼 | 硫酸镍 | 3731 | — |
红土镍矿 | 湿法冶炼 | 硫酸镍 | 7150 | — |
镍铁 | 转产高冰镍 | 硫酸镍 | 22300 | — |
镍产品 | 碳排放量/t CO2 |
---|---|
精炼镍 | 10.19 |
镍铁 | 14.01 |
硫酸镍 | 28.76 |
镍产品 | 碳排放量/t CO2 |
---|---|
精炼镍 | 10.19 |
镍铁 | 14.01 |
硫酸镍 | 28.76 |
1 | ALDY Joseph E, KOTCHEN Matthew J, STAVINS Robert N, et al. Keep climate policy focused on the social cost of carbon[J]. Science, 2021, 373(6557): 850-852. |
2 | DE KONING Arjan, KLEIJN René, HUPPES Gjalt, et al. Metal supply constraints for a low-carbon economy?[J]. Resources, Conservation and Recycling, 2018, 129: 202-208. |
3 | LIU Zhu, DENG Zhu, HE Gang, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth and Environment, 2022, 3(2): 141-155. |
4 | GULLEY Andrew L, NASSAR Nedal T, XUN Sean. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4111-4115. |
5 | ELSHKAKI Ayman, GRAEDEL T E, CIACCI Luca, et al. Resource demand scenarios for the major metals[J]. Environmental Science & Technology, 2018, 52(5): 2491-2497. |
6 | 刘含笑, 吴黎明, 林青阳, 等. 碳足迹评估技术及其在重点工业行业的应用[J]. 化工进展, 2023, 42(5): 2201-2218. |
LIU Hanxiao, WU Liming, LIN Qingyang, et al. Carbon footprint assessment technology and its application in key industries[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2201-2218. | |
7 | SOVACOOL Benjamin K, Saleem H ALI, BAZILIAN Morgan, et al. Sustainable minerals and metals for a low-carbon future[J]. Science, 2020, 367(6473): 30-33. |
8 | CHEN Xing, LIU Qun, BAI Tian, et al. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices[J]. Chemical Engineering Journal, 2021, 409: 127237. |
9 | 中华人民共和国自然资源部. 中国矿产资源报告2018[R/OL]. [2018-10-22]. . |
10 | DUAN Hongbo, ZHOU Sheng, JIANG Kejun, et al. Assessing China’s efforts to pursue the 1.5℃ warming limit[J]. Science, 2021, 372(6540): 378-385. |
11 | PORZIO Jason, SCOWN Corinne D. Life-cycle assessment considerations for batteries and battery materials[J]. Advanced Energy Materials, 2021, 11(33): 2100771. |
12 | BULLE Cécile, MARGNI Manuele, PATOUILLARD Laure, et al. IMPACT World+: A globally regionalized life cycle impact assessment method[J]. The International Journal of Life Cycle Assessment, 2019, 24(9): 1653-1674. |
13 | SUN Xin, LUO Xiaoli, ZHANG Zhan, et al. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles[J]. Journal of Cleaner Production, 2020, 273: 123006. |
14 | LIU Wenqiu, LIU Wei, LI Xinxin, et al. Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000—2018[J]. Resources, Conservation and Recycling, 2021, 164: 105122. |
15 | YANG Caoyu, ZHANG Lingen, CHEN Zhenyang, et al. Dynamic material flow analysis of aluminum from automobiles in China during 2000—2050 for standardized recycling management[J]. Journal of Cleaner Production, 2022, 337: 130544. |
16 | ROSTEK L, TERCERO ESPINOZA L A, GOLDMANN D, et al. A dynamic material flow analysis of the global anthropogenic zinc cycle: Providing a quantitative basis for circularity discussions[J]. Resources, Conservation and Recycling, 2022, 180: 106154. |
17 | KAMRAN Mashael, RAUGEI Marco, HUTCHINSON Allan. A dynamic material flow analysis of lithium-ion battery metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and end-of-life strategies[J]. Resources, Conservation and Recycling, 2021, 167: 105412. |
18 | WANG Yibo, GE Jianping. Potential of urban cobalt mines in China: An estimation of dynamic material flow from 2007 to 2016[J]. Resources, Conservation and Recycling, 2020, 161: 104955. |
19 | GAO Ziyan, GENG Yong, ZENG Xianlai, et al. Evolution of the anthropogenic chromium cycle in China[J]. Journal of Industrial Ecology, 2021, 26(2): 592-608. |
20 | SUN Xin, HAO Han, LIU Zongwei, et al. Tracing global cobalt flow: 1995—2015[J]. Resources, Conservation and Recycling, 2019, 149: 45-55. |
21 | 姚沛帆, 黄庆, 张西华, 等. 中国退役动力电池中关键资源回收潜力研究[J]. 稀有金属, 2022, 46(10): 1331-1339. |
YAO Peifan, HUANG Qing, ZHANG Xihua, et al. Recycling potentials of critical resources from spent lithium-ion power batteries in China[J]. Chinese Journal of Rare Metals, 2022, 46(10): 1331-1339. | |
22 | YUAN Guohua, ELSHKAKI Ayman, XI Xiao. Dynamic analysis of future nickel demand, supply, and associated materials, energy, water, and carbon emissions in China[J]. Resources Policy, 2021, 74: 102432. |
23 | WANG Xingxing, WANG Anjian, ZHONG Weiqiong, et al. Analysis of international nickel flow based on the industrial chain[J]. Resources Policy, 2022, 77: 102729. |
24 | NAKAJIMA Kenichi, DAIGO Ichiro, NANSAI Keisuke, et al. Global distribution of material consumption: Nickel, copper, and iron[J]. Resources, Conservation and Recycling, 2018, 133: 369-374. |
25 | ZENG Xianyang, ZHENG Hongxia, GONG Ruying, et al. Uncovering the evolution of substance flow analysis of nickel in China[J]. Resources, Conservation and Recycling, 2018, 135: 210-215. |
26 | BARTZAS Georgios, TSAKIRIDIS Petros E, KOMNITSAS Kostas. Nickel industry: Heavy metal(loid)s contamination-sources, environmental impacts and recent advances on waste valorization[J]. Current Opinion in Environmental Science & Health, 2021, 21: 100253. |
27 | BAI Yueyang, ZHANG Tianzuo, ZHAI Yijie, et al. Strategies for improving the environmental performance of nickel production in China: Insight into a life cycle assessment[J]. Journal of Environmental Management, 2022, 312: 114949. |
28 | MA Xiaotian, YANG Donglu, ZHAI Yijie, et al. Cost-combined life cycle assessment of ferronickel production[J]. The International Journal of Life Cycle Assessment, 2019, 24(10): 1840-1850. |
29 | BARTZAS Georgios, KOMNITSAS Kostas. Life cycle assessment of ferronickel production in Greece[J]. Resources Conservation and Recycling, 2015, 105: 113-122. |
30 | 陆钟武, 岳强. 物质流分析的两种方法及应用[J]. 有色金属再生与利用, 2006, (2): 27-28. |
LU Zhongwu, YUE Qiang. Two methods of material flow analysis and their applications[J]. Non-Ferrous Metals Recycling and Utilization, 2006(2): 27-28. | |
31 | 蔡博峰, 曹丽斌, 雷宇, 等. 中国碳中和目标下的二氧化碳排放路径[J]. 中国人口资源与环境, 2021, 31(1): 7-14. |
CAI Bofeng, CAO Libin, LEI Yu, et al. China’s carbon emission pathway under the carbon neutrality target[J]. China Population, Resources and Environment, 2021, 31(1): 7-14. | |
32 | United Nations. UN Comtrade Database. 2021[DB/OL]. . |
33 | 中国有色金属工业协会. 中国有色金属工业年鉴[M]. 北京: 中国有色金属工业年鉴社, 2020. |
China Nonferrous Metals Industry. China non-ferrous metal industry yearbook[M]. Beijing: China Nonferrous Metals Industry Yearbook, 2020. | |
34 | Nickel Institute. Consumer products: The role of nickel. 2021[EB/OL]. . |
35 | 魏国. 我国镍产业发展现状及市场分析[J]. 中国有色金属, 2020(14): 44-45. |
WEI Guo. Development status and market analysis of nickel industry in China[J]. China Nonferrous Metals, 2020(14): 44-45. | |
36 | 王少强. JC金属镍冶炼企业能耗因素分析及综合能耗预测[D]. 青岛: 山东科技大学, 2018. |
WANG Shaoqiang. Energy evaluation and prediction of JC metal nickel smelting industry based on optimized neural network[D]. Qingdao: Shandong University of Science and Technology, 2018. |
[1] | CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503. |
[2] | LI Meixuan, CHENG Jianfeng, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Junlian, WANG Chunxia, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Synthesis and electrochemical mechanism of high voltage lithium nickel manganate cathode materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5086-5094. |
[3] | WU Jianyang, WANG Runa, CHEN Yao, SHEN Lanyao, YU Yongli, JIANG Ning, QIU Jingyi, ZHOU Henghui. Preparation process of high nickel cathode precursor for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5079-5085. |
[4] | LI Jingying, MA Longfei, PAN Yibo, LU Shan, ZHANG Hongjuan, XU Long, MA Xiaoxun. Life cycle environmental analysis of coke oven gas to liquefied natural gas based on decarburization and methanation processes [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2872-2879. |
[5] | DI Zichen, LEI Feixia, CHANG Chenggong, CHEN Wenhui, CHENG Fangqin. Evaluation of hydrocarbon resource utilization potential and low-carbon path in the coking industry [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2862-2871. |
[6] | LI Jingying, MA Longfei, ZHANG Hongjuan, PAN Yibo, LU Shan, XU Long, MA Xiaoxun. Current status and research progress of life cycle assessment method in pharmaceutical field [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2851-2861. |
[7] | WU Jianyang, SHEN Lanyao, YU Yongli, WANG Runa, JIANG Ning, YANG Xinhe, QIU Jingyi, ZHOU Henghui. Preparation and performance optimization of high-nickel cathode materials in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1387-1394. |
[8] | HUANG Zhixin, WANG Junyao, YUAN Xiangzhou, DENG Shuai, ZHAO Jie, ZHANG Xinyi. Research advances on upcycling organic solid waste into CO2 adsorbents: A cross-research review [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5748-5764. |
[9] | YANG Mengru, PENG Qin, CHANG Yulong, QIU Shuxing, ZHANG Jianbo, JIANG Xia. Research progress of carbon emission reduction technology with biochar replacing pulverized coal/coke for blast furnace ironmaking [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 490-500. |
[10] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[11] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[12] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[13] | LIU Hongru, LIN Wensheng. Energy efficiency and carbon emission analysis of hydrogen transport chains based on liquid hydrogen and ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1291-1298. |
[14] | YANG Fanming, HE Guowen. Preparation of granular NiO for the electrochemical performance and CO2 adsorption performance [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 907-916. |
[15] | ZHANG Jing, HE Yeheng, WANG Jingjing, XIA Bowen, ZHAO Qinfeng, WANG Yanfei, YU Yinglong, SHAO Chenyi, LONG Chuan. Research progress on nickel-based oxygen evolution electrode prepared by electrodeposition for alkaline water electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6239-6250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |