Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3946-3954.DOI: 10.16085/j.issn.1000-6613.2023-0904
• Materials science and technology • Previous Articles
DU Qian1(), HOU Ming1, GAO Jiyun1(), YANG Li1,2, LU Yuanjia1, GUO Shenghui1,2
Received:
2023-06-01
Revised:
2023-12-18
Online:
2024-08-14
Published:
2024-07-10
Contact:
GAO Jiyun
杜倩1(), 侯明1, 高冀芸1(), 杨黎1,2, 鲁元佳1, 郭胜惠1,2
通讯作者:
高冀芸
作者简介:
杜倩(1995—),女,硕士研究生,研究方向为气体敏感材料。E-mail:1596993153@qq.com。
基金资助:
CLC Number:
DU Qian, HOU Ming, GAO Jiyun, YANG Li, LU Yuanjia, GUO Shenghui. Sensitive performance of NO2 gas sensor enhanced by f-Ti3C2T x /ZIF-8 heterostructures[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3946-3954.
杜倩, 侯明, 高冀芸, 杨黎, 鲁元佳, 郭胜惠. f-Ti3C2T x /ZIF-8异质结构增强NO2气体传感器的敏感性能[J]. 化工进展, 2024, 43(7): 3946-3954.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0904
材料 | 浓度/μL·L-1 | 工作温度/℃ | 响应值/% | 参考文献 |
---|---|---|---|---|
f-Ti3C2T x /ZIF-8 | 100 | 225 | 98.35 | 本工作 |
Ti3C2/TiO2 | 100 | 180 | 19.76 | [ |
Ag-In2O3 | 100 | 150 | 1.8 | [ |
ZnO-rGO | 100 | 25 | 47.4 | [ |
材料 | 浓度/μL·L-1 | 工作温度/℃ | 响应值/% | 参考文献 |
---|---|---|---|---|
f-Ti3C2T x /ZIF-8 | 100 | 225 | 98.35 | 本工作 |
Ti3C2/TiO2 | 100 | 180 | 19.76 | [ |
Ag-In2O3 | 100 | 150 | 1.8 | [ |
ZnO-rGO | 100 | 25 | 47.4 | [ |
1 | TUNG Tran Thanh, YOO Jeongha, ALOTAIBI Faisal K, et al. Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors[J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16521-16532. |
2 | GUO Jingyu, ZHANG Dongzhi, LI Tingting, et al. Green light-driven acetone gas sensor based on electrospinned CdS nanospheres/Co3O4 nanofibers hybrid for the detection of exhaled diabetes biomarker[J]. Journal of Colloid and Interface Science, 2022, 606: 261-271. |
3 | JING Zhihong, ZHAN Jinhua. Fabrication and gas-sensing properties of porous ZnO nanoplates[J]. Advanced Materials, 2008, 20(23): 4547-4551. |
4 | 张天翔, 王冬. 用于气体传感器的碳复合NiO敏感材料[J]. 化工进展, 2020, 39(11): 4544-4549. |
ZHANG Tianxiang, WANG Dong. Research on carbon composite NiO sensitive material used for gas sensor[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4544-4549. | |
5 | 张晓, 徐瑶华, 刘皓, 等. 基于金属氧化物的乙醇检测气敏材料的研究进展[J]. 化工进展, 2019, 38(7): 3207-3226. |
ZHANG Xiao, XU Yaohua, LIU Hao, et al. Recent advances of ethanol detection materials based on metal oxides[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3207-3226. | |
6 | LI Gaojie, CHENG Zhixuan, XIANG Qun, et al. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone[J]. Sensors and Actuators B: Chemical, 2019, 283: 590-601. |
7 | HUANGFU Peijue, ATKINSON Richard. Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis[J]. Environment International, 2020, 144: 105998. |
8 | Tae Hoon EOM, CHO Sung Hwan, Jun Min SUH, et al. Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination[J]. Journal of Materials Chemistry A, 2021, 9(18): 11168-11178. |
9 | YAO Xingyu, ZHAO Jinbo, JIN Zhidong, et al. Flower-like hydroxyfluoride-sensing platform toward NO2 detection[J]. ACS Applied Materials & Interfaces, 2021, 13(22): 26278-26287. |
10 | LI Qingting, ZENG Wen, LI Yanqiong. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments[J]. Sensors and Actuators B: Chemical, 2022, 359: 131579. |
11 | HVIDTFELDT Ulla Arthur, Mette SØRENSEN, GEELS Camilla, et al. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort[J]. Environment International, 2019, 123: 265-272. |
12 | HUANG Yanqian, ZHU Meng, JI Mengmeng, et al. Air pollution, genetic factors, and the risk of lung cancer: A prospective study in the UK biobank[J]. American Journal of Respiratory and Critical Care Medicine, 2021, 204(7): 817-825. |
13 | SHIN Dain, SOHN Inkyu, KIM Jaehyeok, et al. Defect-selective functionalization of 2D-WS2 nanofilms with Pt nanoparticles for enhanced room-temperature NO2 gas sensing[J]. ACS Applied Nano Materials, 2023, 6(20): 19327-19337. |
14 | LIU Yingxuan, ZHANG Yanan, LIU Shuting, et al. Fiber optic room temperature ethanol sensor based on ZnSnO3/TiO2 with UV radiation sensitization[J]. Sensors and Actuators B: Chemical, 2024, 399: 134814. |
15 | HOJAMBERDIEV Mirabbos, GOEL Neeraj, KUMAR Rahul, et al. Efficient NO2 sensing performance of a low-cost nanostructured sensor derived from molybdenite concentrate[J]. Green Chemistry, 2020, 22(20): 6981-6991. |
16 | GAO Xing, ZHANG Tong. An overview: Facet-dependent metal oxide semiconductor gas sensors[J]. Sensors and Actuators B: Chemical, 2018, 277: 604-633. |
17 | DROBEK Martin, KIM Jae-Hun, BECHELANY Mikhael, et al. MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8323-8328. |
18 | 陶国清, 程知萱, 张丹, 等. 双金属MOF衍生的Co掺杂氧化锌多孔材料制备及其气敏性能[J]. 功能材料, 2020, 51(9): 9185-9192. |
TAO Guoqing, CHENG Zhixuan, ZHANG Dan, et al. Preparation and gas sensing properties of Co-doped ZnO porous materials derived by bimetal MOF[J]. Journal of Functional Materials, 2020, 51(9): 9185-9192. | |
19 | YAO Mingshui, TANG Wenxiang, WANG Guane, et al. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance[J]. Advanced Materials, 2016, 28(26): 5229-5234. |
20 | WU Xiaonan, XIONG Shunshun, GONG Yu, et al. MOF-SMO hybrids as a H2S sensor with superior sensitivity and selectivity[J]. Sensors and Actuators B: Chemical, 2019, 292: 32-39. |
21 | 赵佳明. Cu2O@SnO2异质核-壳多面体的制备以及气敏性能研究[D]. 长春: 吉林大学, 2021. |
ZHAO Jiaming. Preparation and gas sensing properties of Cu2O@SnO2 heterogeneous core-shell polyhedron[D]. Changchun: Jilin University, 2021. | |
22 | 郭杰. 基于Co3O4纳米异质结构的气体传感器研究[D]. 长春: 吉林大学, 2021. |
GUO jie. Research on gas sensor based on Co3O4 nano-heterostructure[D]. Changchun: Jilin University, 2021. | |
23 | KIM Seon Joon, Hyeong-Jun KOH, REN Chang e, et al. Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio[J]. ACS Nano, 2018, 12(2): 986-993. |
24 | LIPATOV Alexey, ALHABEB Mohamed, LUKATSKAYA Maria R, et al. MXene materials: Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials, 2016, 2(12): 1670068. |
25 | SHAHZAD Faisal, ALHABEB Mohamed, HATTER Christine B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. |
26 | LIU Ji, ZHANG Haobin, SUN Renhui, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(38): 1702367. |
27 | NAGUIB M, KURTOUGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced materials, 2011, 23(37): 4248-4253. |
28 | TAI Huiling, DUAN Zaihua, HE Zaizhou, et al. Enhanced ammonia response of Ti3C2T nanosheets supported by TiO2 nanoparticles at room temperature[J]. Sensors and Actuators B: Chemical, 2019, 298: 126874. |
29 | YANG Zijie, JIANG Li, WANG Jing, et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2T x /ZnO spheres for room temperature application[J]. Sensors and Actuators B: Chemical, 2021, 326: 128828. |
30 | LEE Jong-Heun. Gas sensors using hierarchical and hollow oxide nanostructures: Overview[J]. Sensors and Actuators B: Chemical, 2009, 140(1): 319-336. |
31 | GHIDIU Michael, LUKATSKAYA Maria R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
32 | 陈赛, 陶丽娟, 李伟, 等. ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3896-3903. |
CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and Prussian blue/(tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903. | |
33 | JANG Eunhee, KIM Eunjoo, KIM Heejoong, et al. Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability[J]. Journal of Membrane Science, 2017, 540: 430-439. |
34 | LI Xinliang, YIN Xiaowei, XU Hailong, et al. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34524-34533. |
35 | LIU Siwei, WANG Mingyuan, LIU Guiwu, et al. Enhanced NO2 gas-sensing performance of 2D Ti3C2/TiO2 nanocomposites by in situ formation of Schottky barrier[J]. Applied Surface Science, 2021, 567: 150747. |
36 | SABRY Raad S, AGOOL Ibrahim R, ABBAS Asaad M. Hydrothermal synthesis of In2O3: Ag nanostructures for NO2 gas sensor[J]. Silicon, 2019, 11(5): 2475-2478. |
37 | LEE HsinYing, HEISH YungChing, LEE ChingTing. High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane[J]. Journal of Alloys and Compounds, 2019, 773: 950-954. |
38 | TANG Xiao, DU Aijun, KOU Liangzhi. Gas sensing and capturing based on two‐dimensional layered materials: Overview from theoretical perspective[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8: 1361 |
39 | BARSAN Nicolae, WEIMAR Udo. Conduction model of metal oxide gas sensors[J]. Journal of Electroceramics, 2001, 7(3): 143-167. |
[1] | ZHAO Weigang, ZHANG Qianqian, LAN Yuling, YAN Wen, ZHOU Xiaojian, FAN Mizi, DU Guanben. Research progress and prospect of the core materials for vacuum insulation panel [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3910-3922. |
[2] | YANG Guang, JIANG Ruiting, ZHANG Yue, FU Zijian, LIU Wei. Application of vanadium pentoxide/carbon nanocomposites in supercapacitors [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3857-3871. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[4] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[5] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
[6] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[7] | ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838. |
[8] | WANG Chengjun, WANG Linqiang, MA Jing, MENG Shujuan, DUAN Zhiying, SUN Chufeng, SHEN Tao, SU Qiong. Research progress of carbon matrix composite phase change materials [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6383-6398. |
[9] | CAO Mingmin, HAN Chengle, YANG Fang, CHEN Yuhuan. CO2 capture and separation by ionic liquid-metal organic framework composite materials [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5831-5841. |
[10] | YE Hao, HU Ping, WANG Ce, LIU Yong. Advances in research on magnetic fibrous electromagnetic wave absorbers [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5310-5321. |
[11] | YANG Zhuangzhuang, LIU Yongjun, LIU Xingshe, LIU Zhe, YANG Lu, ZHANG Aining. Coalescence separation of oily sludge and removal effect of organic substances from coal chemical wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 538-545. |
[12] | QIN Jian, LIU Tianxia, WANG Jian, LU Xing. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. |
[13] | GUO Zhi’an, SUI Zhihui, LI Yaping, XU Yikun, SUN Fang, ZHAO Xin. Research progress on preparation technology of phase-change bidirectional temperature-regulating textile materials [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3648-3659. |
[14] | ZHENG Jinbao, LI Chen. Research progress in improving hydrophobicity of starch-based packaging materials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3089-3102. |
[15] | LI Zheng, NIU Jingdong, HE Guangze, ZHANG Lanhe, ZHANG Haifeng. Preparation of PVDF-PFTS/SiO2 membrane and its resistance mixed fouling performance [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2713-2721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |