Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 6978-6995.DOI: 10.16085/j.issn.1000-6613.2024-1893
• Materials science and technology • Previous Articles
HE Juan1(
), LYU Kaihe1(
), HUANG Xianbin1, SUN Jingsheng1,2, ZHANG Chao1, DAI Jiajun1, ZHANG Xuehao1
Received:2024-11-17
Revised:2024-12-22
Online:2026-01-06
Published:2025-12-25
Contact:
LYU Kaihe
何娟1(
), 吕开河1(
), 黄贤斌1, 孙金声1,2, 章超1, 戴嘉君1, 张学皓1
通讯作者:
吕开河
作者简介:何娟(1993—)女,博士研究生,研究方向为油气田化学与提高采收率技术。E-mail:hejuan0303@126.com。
基金资助:CLC Number:
HE Juan, LYU Kaihe, HUANG Xianbin, SUN Jingsheng, ZHANG Chao, DAI Jiajun, ZHANG Xuehao. Research progress and application prospects of rheology modifiers in oil-based drilling fluids[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6978-6995.
何娟, 吕开河, 黄贤斌, 孙金声, 章超, 戴嘉君, 张学皓. 油基钻井液用流型调节剂及其制备方法研究进展[J]. 化工进展, 2025, 44(12): 6978-6995.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1893
| 黏土类型 | 有机改性剂 | 改性方法 | 参考文献 |
|---|---|---|---|
| 蒙脱土 | 十六烷基三甲基溴化铵 | 插层改性 | [ |
| 蒙脱土 | 非离子表面活性剂Ultramine 20、Ultramine 50 | 插层改性 | [ |
| 蒙脱土 | 十八烷基二甲基苄基氯化铵、硬脂基三甲基氯化铵、十二烷基三甲基氯化铵 | 插层改性 | [ |
| 蒙脱土 | 3-氨丙基三乙氧基硅烷 | 表面改性 | [ |
| 海泡石 | N-氨乙基-γ-氨丙基三甲氧基硅烷 | 表面改性 | [ |
| 海泡石 | 十八胺、二聚二胺、十八烷基三甲基氯化铵、双十八烷基二甲基氯化铵、低聚铵盐 | 插层改性 | [ |
| 海泡石 | N-十六烷基吡啶 | 插层改性 | [ |
| 海泡石 | 四丁基溴化铵、十二烷基三甲基溴化铵、十六烷基三甲基溴化铵 | 插层改性 | [ |
| 坡缕石 | 3-巯基丙基三甲氧基硅烷和3-氨丙基三甲氧基硅烷 | 表面改性 | [ |
| 坡缕石 | 十六烷基三甲基溴化铵 | 表面改性 | [ |
| 黏土类型 | 有机改性剂 | 改性方法 | 参考文献 |
|---|---|---|---|
| 蒙脱土 | 十六烷基三甲基溴化铵 | 插层改性 | [ |
| 蒙脱土 | 非离子表面活性剂Ultramine 20、Ultramine 50 | 插层改性 | [ |
| 蒙脱土 | 十八烷基二甲基苄基氯化铵、硬脂基三甲基氯化铵、十二烷基三甲基氯化铵 | 插层改性 | [ |
| 蒙脱土 | 3-氨丙基三乙氧基硅烷 | 表面改性 | [ |
| 海泡石 | N-氨乙基-γ-氨丙基三甲氧基硅烷 | 表面改性 | [ |
| 海泡石 | 十八胺、二聚二胺、十八烷基三甲基氯化铵、双十八烷基二甲基氯化铵、低聚铵盐 | 插层改性 | [ |
| 海泡石 | N-十六烷基吡啶 | 插层改性 | [ |
| 海泡石 | 四丁基溴化铵、十二烷基三甲基溴化铵、十六烷基三甲基溴化铵 | 插层改性 | [ |
| 坡缕石 | 3-巯基丙基三甲氧基硅烷和3-氨丙基三甲氧基硅烷 | 表面改性 | [ |
| 坡缕石 | 十六烷基三甲基溴化铵 | 表面改性 | [ |
| 反应物 | 制备方法 | 质量分数 | 测试条件 | 流变性能 | 参考文献 |
|---|---|---|---|---|---|
| 二聚酸、二乙醇胺 | 缩合聚合 | 0.3% | 180℃×16h | YP: 0.25Pa Gel: 4.5/5.5Pa | [ |
| 二聚酸、二乙烯三胺 | 缩合聚合 | 1.0% | 200℃×16h | YP: 10.5Pa Gel: 6.5/16Pa | [ |
| 二聚酸、聚氧乙烯醚脂肪胺 | 缩合聚合 | 1.0% | 180℃×16h | YP: 4.5Pa Gel: 3.5/5.0Pa | [ |
| 异丁烯、邻苯二甲酸酐、甲基铝氧烷 | 配位聚合 | 1.5% | 220℃×16h | AV: 49mPa·s PV: 42mPa·s YP: 7Pa | [ |
| 烷基磷酸酯、铝盐 | 配位聚合 | 1.0% | 150℃×16h | PV: 20.5mPa·s YP: 14Pa | [ |
| 甲基丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸月桂酯 | 悬浮聚合 | 1.0% | 120℃×16h | AV: 23mPa·s PV: 15mPa·s YP: 8Pa | [ |
| 2-甲基-2-丙烯酰胺基丙磺酸、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮、功能单体 | 反相乳液聚合 | 1.0% | 180℃×16h | YP: 11.5Pa Gel: 1.0/1.0Pa | [ |
| 羟基酰胺、丙磺酸、改性淀粉 | 反相乳液聚合 | 1.0% | 180℃×16h | AV: 71mPa·s PV: 56mPa·s YP: 15Pa Gel: 6.0/8.5Pa | [ |
| 反应物 | 制备方法 | 质量分数 | 测试条件 | 流变性能 | 参考文献 |
|---|---|---|---|---|---|
| 二聚酸、二乙醇胺 | 缩合聚合 | 0.3% | 180℃×16h | YP: 0.25Pa Gel: 4.5/5.5Pa | [ |
| 二聚酸、二乙烯三胺 | 缩合聚合 | 1.0% | 200℃×16h | YP: 10.5Pa Gel: 6.5/16Pa | [ |
| 二聚酸、聚氧乙烯醚脂肪胺 | 缩合聚合 | 1.0% | 180℃×16h | YP: 4.5Pa Gel: 3.5/5.0Pa | [ |
| 异丁烯、邻苯二甲酸酐、甲基铝氧烷 | 配位聚合 | 1.5% | 220℃×16h | AV: 49mPa·s PV: 42mPa·s YP: 7Pa | [ |
| 烷基磷酸酯、铝盐 | 配位聚合 | 1.0% | 150℃×16h | PV: 20.5mPa·s YP: 14Pa | [ |
| 甲基丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸月桂酯 | 悬浮聚合 | 1.0% | 120℃×16h | AV: 23mPa·s PV: 15mPa·s YP: 8Pa | [ |
| 2-甲基-2-丙烯酰胺基丙磺酸、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮、功能单体 | 反相乳液聚合 | 1.0% | 180℃×16h | YP: 11.5Pa Gel: 1.0/1.0Pa | [ |
| 羟基酰胺、丙磺酸、改性淀粉 | 反相乳液聚合 | 1.0% | 180℃×16h | AV: 71mPa·s PV: 56mPa·s YP: 15Pa Gel: 6.0/8.5Pa | [ |
| 无机相 | 有机相 | 制备方法 | 参考文献 |
|---|---|---|---|
| 蒙脱石、埃洛石、海泡石 | 聚丙烯 | 熔融混合 | [ |
| γ-甲基丙烯酰氧基丙基三甲氧基硅烷改性蒙脱石 | 丁苯橡胶 | 溶液插层 | [ |
| 蒙脱石 | 氨丙基异辛基多面体低聚倍半硅氧烷 | 溶液插层 | [ |
| Cloisite 30B、Cloisite 15A | 乙烯-醋酸乙烯酯共聚物、乙烯-乙烯醇共聚物、乙烯-醋酸乙烯酯-乙烯醇共聚物 | 熔融混合 | [ |
| 有机改性蒙脱石 | 羟基封端的1,4-聚丁二烯低聚物 | 原位聚合 | [ |
| 有机改性纳米黏土 | 聚酰胺 | 原位聚合 | [ |
| 有机改性蒙脱石 | 聚对苯二甲酸乙二醇酯 | 原位聚合 | [ |
| 有机蒙脱石 | 聚丙烯 | 熔融混合 | [ |
| 锂皂石 | 聚乙二醇 | 溶液插层 | [ |
| Cloisite 15A、Cloisite 20A、Cloisite 25A | 聚环氧乙烷 | 溶液插层 | [ |
| 无机相 | 有机相 | 制备方法 | 参考文献 |
|---|---|---|---|
| 蒙脱石、埃洛石、海泡石 | 聚丙烯 | 熔融混合 | [ |
| γ-甲基丙烯酰氧基丙基三甲氧基硅烷改性蒙脱石 | 丁苯橡胶 | 溶液插层 | [ |
| 蒙脱石 | 氨丙基异辛基多面体低聚倍半硅氧烷 | 溶液插层 | [ |
| Cloisite 30B、Cloisite 15A | 乙烯-醋酸乙烯酯共聚物、乙烯-乙烯醇共聚物、乙烯-醋酸乙烯酯-乙烯醇共聚物 | 熔融混合 | [ |
| 有机改性蒙脱石 | 羟基封端的1,4-聚丁二烯低聚物 | 原位聚合 | [ |
| 有机改性纳米黏土 | 聚酰胺 | 原位聚合 | [ |
| 有机改性蒙脱石 | 聚对苯二甲酸乙二醇酯 | 原位聚合 | [ |
| 有机蒙脱石 | 聚丙烯 | 熔融混合 | [ |
| 锂皂石 | 聚乙二醇 | 溶液插层 | [ |
| Cloisite 15A、Cloisite 20A、Cloisite 25A | 聚环氧乙烷 | 溶液插层 | [ |
| [1] | 高文龙. 低成本低油水比低土相油基钻井液技术研制与应用[J]. 特种油气藏, 2024, 31(4): 142-148. |
| GAO Wenlong. Research on low-cost, low oil-water ratio, low soil content oil-based drilling fluid technology[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 142-148. | |
| [2] | 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 76-89. |
| SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 76-89. | |
| [3] | 耿铁, 邱正松, 雷明, 等. 酰胺基流变性调控剂研制及其作用机制[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 113-120. |
| GENG Tie, QIU Zhengsong, LEI Ming, et al. Synthesis and mechanism of amide rheological regulator[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(3): 113-120. | |
| [4] | 鄢捷年. 钻井液工艺学[M]. 东营: 石油大学出版社, 2001: 243-244. |
| YAN Jienian. Drilling fluid technology[M]. China University of Petroleum Press, 2001: 243-244. | |
| [5] | 张东悦, 周劲辉, 史浩明, 等. 油基钻井液用有机土研究进展[J]. 当代化工研究, 2022(11): 168-170. |
| ZHANG Dongyue, ZHOU Jinhui, SHI Haoming, et al. Research progress of organoclays for oil-based drilling fluids[J]. Modern Chemical Research, 2022(11): 168-170. | |
| [6] | WENG Jianle, GONG Zhijin, LIAO Libin, et al. Comparison of organo-sepiolite modified by different surfactants and their rheological behavior in oil-based drilling fluids[J]. Applied Clay Science, 2018, 159: 94-101. |
| [7] | ZHUANG Guanzheng, ZHANG Zepeng, PENG Shanmao, et al. Enhancing the rheological properties and thermal stability of oil-based drilling fluids by synergetic use of organo-montmorillonite and organo-sepiolite[J]. Applied Clay Science, 2018, 161: 505-512. |
| [8] | ZHUANG Guanzheng, ZHANG Zepeng, JABER Maguy. Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview[J]. Applied Clay Science, 2019, 177: 63-81. |
| [9] | 吕国诚, 廖立兵, 饶文秀, 等. 凹凸棒石的资源及应用研究进展[J]. 矿产保护与利用, 2019, 39(6): 112-120. |
| Guocheng LYU, LIAO Libin, RAO Wenxiu, et al. Resource distribution and application of Attapulgite[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 112-120. | |
| [10] | 任鹏锟, 仲兆平, 杨宇轩, 等. 改性海泡石对污泥热解过程中重金属的控制[J]. 化工进展, 2024, 43(1): 541-550. |
| REN Pengkun, ZHONG Zhaoping, YANG Yuxuan, et al. Control of heavy metals in sludge pyrolysis process by modified sepiolite[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 541-550. | |
| [11] | TARTAGLIONE G, TABUANI D, CAMINO G. Thermal and morphological characterisation of organically modified sepiolite[J]. Microporous and Mesoporous Materials, 2008, 107(1/2): 161-168. |
| [12] | SMITH C R. Base exchange reactions of bentonite and salts of organic bases[J]. Journal of the American Chemical Society, 1934, 56(7): 1561-1563. |
| [13] | 廖晓凤, 薄文祥, 严秋玲, 等. 蒙脱土的改性及其悬浮液的流变行为[J]. 功能材料, 2016, 47(5): 5154-5158. |
| LIAO Xiaofeng, BO Wenxiang, YAN Qiuling, et al. Modifications of montmorillonite and rheological behaviors of their suspensions[J]. Journal of Functional Materials, 2016, 47(5): 5154-5158. | |
| [14] | 庄官政. 油基钻井液用有机黏土的制备、结构和性能研究[D]. 北京: 中国地质大学(北京), 2019. |
| ZHUANG Guanzheng. Study on preparation, structure and properties of organic clay for oil-based drilling fluid[D]. Beijing: China University of Geosciences, 2019. | |
| [15] | ZHUANG Guanzheng, ZHANG Zepeng, FU Meng, et al. Comparative study on the use of cationic-nonionic-organo-montmorillonite in oil-based drilling fluids[J]. Applied Clay Science, 2015, 116: 257-262. |
| [16] | GUO Miao, YANG Guangbin, ZHANG Shengmao, et al. Co-modification of bentonite by CTAB and silane and its performance in oil-based drilling mud[J]. Clays and Clay Minerals, 2020, 68(6): 646-655. |
| [17] | ZHOU Daojin, ZHANG Zepeng, TANG Jialun, et al. Applied properties of oil-based drilling fluids with montmorillonites modified by cationic and anionic surfactants[J]. Applied Clay Science, 2016, 121: 1-8. |
| [18] | ZHUANG Guanzheng, GAO Jiahua, PENG Shanmao, et al. Synergistically using layered and fibrous organoclays to enhance the rheological properties of oil-based drilling fluids[J]. Applied Clay Science, 2019, 172: 40-48. |
| [19] | 杨娜, 马建中, 石佳博, 等. 层状复合氢氧化物的有机改性方法及应用研究进展[J]. 化学学报, 2023, 81(2): 207-216. |
| YANG Na, MA Jianzhong, SHI Jiabo, et al. Organic modification of layered double hydroxides and its applications[J]. Acta Chimica Sinica, 2023, 81(2): 207-216. | |
| [20] | ZHUANG Guanzheng, ZHANG Zepeng, SUN Jinlong, et al. The structure and rheology of organo-montmorillonite in oil-based system aged under different temperatures[J]. Applied Clay Science, 2016, 124: 21-30. |
| [21] | SILVA I A, SOUSA F K A, MENEZES R R, et al. Modification of bentonites with nonionic surfactants for use in organic-based drilling fluids[J]. Applied Clay Science, 2014, 95: 371-377. |
| [22] | JIA Meng, ZHANG Zepeng, WEI Long, et al. Study on properties and mechanism of organic montmorillonite modified bitumens: View from the selection of organic reagents[J]. Construction and Building Materials, 2019, 217: 331-342. |
| [23] | BERTUOLI Paula T, PIAZZA Diego, SCIENZA Lisete C, et al. Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane[J]. Applied Clay Science, 2014, 87: 46-51. |
| [24] | Mehmet DOĞAN, TURHAN Yasemin, ALKAN Mahir, et al. Functionalized sepiolite for heavy metal ions adsorption[J]. Desalination, 2008, 230(1/2/3): 248-268. |
| [25] | 陈洪强. 不同形状的改性纳米颗粒在油基钻井液中的应用性能研究[D]. 济南: 山东大学, 2020. |
| CHEN Hongqiang. Application of modified nanoparticles with different shapes in oil-based drilling fluid[D]. Jinan: Shan Dong University, 2020. | |
| [26] | BAKHTIARY Somayeh, SHIRVANI Mehran, SHARIATMADARI Hossein. Characterization and 2,4-D adsorption of sepiolite nanofibers modified by N-cetylpyridinium cations[J]. Microporous and Mesoporous Materials, 2013, 168: 30-36. |
| [27] | MARTÍN-ALFONSO M J, MEJÍA A, MARTÍNEZ-BOZA F J, et al. The influence of alkyl ammonium modifiers on the microstructure and high-pressure rheology of sepiolite-vegetable oil dispersions[J]. Applied Clay Science, 2024, 247: 107210. |
| [28] | LUO Wuhui, SASAKI Keiko, HIRAJIMA Tsuyoshi. Surfactant-modified montmorillonite by benzyloctadecyldimethylammonium chloride for removal of perchlorate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481: 616-625. |
| [29] | WANG Shuangjia, SHEN Yun, CHEN Xiuping, et al. Cationic surfactant-modified palygorskite particles as effective stabilizer for Pickering emulsion gel formation[J]. Applied Clay Science, 2022, 219: 106439. |
| [30] | SARKAR Madhuchhanda, DANA Kausik. Intercalation of montmorillonite with dialkylammonium cationic surfactants[J]. Journal of Molecular Structure, 2022, 1256: 132468. |
| [31] | LAIPAN Minwang, XIANG Lichen, YU Jingfan, et al. Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications[J]. Progress in Materials Science, 2020, 109: 100631. |
| [32] | FU Meng, ZHANG Zepeng, WU Limei, et al. Investigation on the co-modification process of montmorillonite by anionic and cationic surfactants[J]. Applied Clay Science, 2016, 132: 694-701. |
| [33] | ZHUANG Guanzheng, ZHANG Zepeng, CHEN Huiwen. Influence of the interaction between surfactants and sepiolite on the rheological properties and thermal stability of organo-sepiolite in oil-based drilling fluids[J]. Microporous and Mesoporous Materials, 2018, 272: 143-154. |
| [34] | ZHU Jianxi, ZHANG Ping, QING Yanhong, et al. Novel intercalation mechanism of zwitterionic surfactant modified montmorillonites[J]. Applied Clay Science, 2017, 141: 265-271. |
| [35] | WU Sanqin, ZHANG Zepeng, WANG Yunhua. Influence of montmorillonites exchange capacity on the basal spacing of cation-anion organo-montmorillonites[J]. Materials Research Bulletin, 2014, 59: 59-64. |
| [36] | ZHUANG Guanzheng, ZHANG Haixu, WU Hao, et al. Influence of the surfactants’ nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids[J]. Applied Clay Science, 2017, 135: 244-252. |
| [37] | LIN Jiang-Jen, CHEN Yumin, YU Minghong. Hydrogen-bond driven intercalation of synthetic fluorinated mica by poly(oxypropylene)-amidoamine salts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1/2/3): 162-167. |
| [38] | GENG Tie, QIU Zhengsong, ZHAO Chunhua, et al. Rheological study on the invert emulsion fluids with organoclay at high aged temperatures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573: 211-221. |
| [39] | Soo-Ling BEE, ABDULLAH M A A, Soo-Tueen BEE, et al. Polymer nanocomposites based on silylated-montmorillonite: A review[J]. Progress in Polymer Science, 2018, 85: 57-82. |
| [40] | HE Hongping, TAO Qi, ZHU Jianxi, et al. Silylation of clay mineral surfaces[J]. Applied Clay Science, 2013, 71: 15-20. |
| [41] | PARK Man, SHIM In-Keun, JUNG Euy-Young, et al. Modification of external surface of laponite by silane grafting[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2/3): 499-501. |
| [42] | ASGARI Mohammad, SUNDARARAJ Uttandaraman. Silane functionalization of sodium montmorillonite nanoclay: The effect of dispersing media on intercalation and chemical grafting[J]. Applied Clay Science, 2018, 153: 228-238. |
| [43] | HE Wentao, YAO Yong, HE Min, et al. Influence of reaction conditions on the grafting pattern of 3-glycidoxypropyl trimethoxysilane on montmorillonite[J]. Bulletin of the Korean Chemical Society, 2013, 34(1): 112-116. |
| [44] | SU Linna, TAO Qi, HE Hongping, et al. Silylation of montmorillonite surfaces: Dependence on solvent nature[J]. Journal of Colloid and Interface Science, 2013, 391: 16-20. |
| [45] | PISCITELLI Filomena, POSOCCO Paola, TOTH Radovan, et al. Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length[J]. Journal of Colloid and Interface Science, 2010, 351(1): 108-115. |
| [46] | 李树白, 姚培, 刘媛, 等. 表面接枝改性有机膨润土的制备及其对苯酚吸附[J]. 硅酸盐通报, 2018, 37(4): 1447-1454. |
| LI Shubai, YAO Pei, LIU Yuan, et al. Grafting modification on the surface of organobentonite and its application on phenol absorption[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1447-1454. | |
| [47] | 潘越. 油基钻井液用有机土改性机理研究[D]. 青岛: 中国石油大学(华东), 2014. |
| PAN Yue. Research on the modification mechanism of organic clay used in oil-based drilling fluids[D]. Qingdao: China University of Petroleum (East China), 2014. | |
| [48] | ZHUANG Guanzheng, WU Hao, ZHANG Haixu, et al. Rheological properties of organo-palygorskite in oil-based drilling fluids aged at different temperatures[J]. Applied Clay Science, 2017, 137: 50-58. |
| [49] | 黄贤斌, 孙金声, 蒋官澄, 等. 改性脂肪酸提切剂的研制及其应用[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 107-112. |
| HUANG Xianbin, SUN Jinsheng, JIANG Guancheng, et al. Synthesis of a modified fatty acid as rheology modifier and its application[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(3): 107-112. | |
| [50] | 王伟, 杨洁, 荆鹏. 油基增黏提切剂VSSI的制备和性能评价[J]. 长江大学学报(自然科学版), 2019, 16(6): 30-32. |
| WANG Wei, YANG Jie, JIN Peng. Preparation of oil based viscosifier VSSI and its lab research[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(6): 30-32. | |
| [51] | 孙伟, 彭洁, 王倩, 等. 抗高温油基钻井液用提切剂的研制及性能评价[J]. 精细石油化工, 2020, 37(4): 19-24. |
| SUN Wei, PENG Jie, WANG Qian, et al. Development and performance evaluation of cutting agent for high temperature oil-based drilling fluid[J]. Speciality Petrochemicals, 2020, 37(4): 19-24. | |
| [52] | HUANG Xianbin, MENG Xu, LI Mao, et al. Improving the weak gel structure of an oil-based drilling fluid by using a polyamide wax[J]. Gels, 2022, 8(10): 631. |
| [53] | 蒋官澄, 史赫, 贺垠博. 生物柴油基恒流变钻井液体系[J]. 石油勘探与开发, 2022, 49(1): 173-182. |
| JIANG Guancheng, SHI He, HE Yinbo. The biodiesel-based flat-rheology drilling fluid system[J]. Petroleum Exploration and Development, 2022, 49(1): 173-182. | |
| [54] | ZHOU Yan, PU Xiaolin. Lipophilic rheology modifier and its application in oil-based drilling fluids[J]. Journal of Applied Polymer Science, 2022, 139(3): 51502. |
| [55] | 覃勇, 蒋官澄, 邓正强, 等. 聚酯提切剂的研制及高密度油包水钻井液的配制[J]. 钻井液与完井液, 2015, 32(6): 1-4. |
| QIN Yong, JIANG Guancheng, DENG Zhengqiang, et al. Development of polyester gel strength enhancer and high density oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(6): 1-4. | |
| [56] | OSEH Jeffrey O, MOHD Norddin M N A, GBADAMOSI Afeez O, et al. Polymer nanocomposites application in drilling fluids: A review[J]. Geoenergy Science and Engineering, 2023, 222: 211416. |
| [57] | 杨斌. 油基钻井液稳黏提切剂的研制及应用[J]. 钻采工艺, 2019, 42(1): 80-82. |
| YANG Bin. Development of rheology modifier for oil based drilling fluid[J]. Drilling & Production Technology, 2019, 42(1): 80-82. | |
| [58] | 李晓岚, 孙举, 郑志军, 等. 无土相油基钻井液用增黏提切剂的合成及性能[J]. 石油化工, 2016, 45(9): 1087-1093. |
| LI Xiaolan, SUN Ju, ZHENG Zhijun, et al. Synthesis and properties of a tackifying and shear strength-improving agent for clay-free oil-based drilling fluids[J]. Petrochemical Technology, 2016, 45(9): 1087-1093. | |
| [59] | 季一辉, 王建华, 李外, 等. 油基钻井液用提切剂的研制及性能评价[J]. 现代化工, 2014, 34(7): 100-102. |
| JI Yihui, WANG Jianhua, LI Wai, et al. Synthesis and properties of a rheological modifier for oil based drilling fluid[J]. Modern Chemical Industry, 2014, 34(7): 100-102. | |
| [60] | BIRJANDI NEJAD Hossein, PACZKOWSKI Mark A, MALAJATI Yassine, et al. Polyurethane rheology modifiers for organic compositions[J]. Journal of Applied Polymer Science, 2018, 135(25): e46372. |
| [61] | 蒋官澄, 贺垠博, 黄贤斌, 等. 基于超分子技术的高密度无黏土油基钻井液体系[J]. 石油勘探与开发, 2016, 43(1): 131-135. |
| JIANG Guancheng, HE Yinbo, HUANG Xianbin, et al. A high-density organoclay-free oil base drilling fluid based on supramolecular chemistry[J]. Petroleum Exploration and Development, 2016, 43(1): 131-135. | |
| [62] | 闻丽, 杨鹏, 匡绪兵, 等. 一种油基钻井液用抗高温提切剂及其制备方法和应用: CN117384607A[P]. 2024-01-12. |
| WEN Li, YANG Peng, KUANG Xubin, et al. An oil-based drilling fluid resistant to high-temperature cutting agent and its preparation method and application: CN117384607A[P]. 2024-01-12. | |
| [63] | 曹杰, 费东涛, 孟令伟, 等. 一种具有磷酸酯铝结构的油基钻井液用提切剂及其制备方法: CN106566490A[P]. 2017-04-19. |
| CAO Jie, FEI Dongtao, MENG Lingwei, et al. An oilbased drilling fluid with aluminum phosphate ester structure and its preparation method: CN106566490A[P]. 2017-04-19. | |
| [64] | 蒋官澄, 黄胜铭, 侯博, 等. 增效型无土相仿生油基钻井液技术的研究与应用[J]. 钻采工艺, 2024, 47(2): 93-103. |
| JIANG Guancheng, HUANG Shengming, HOU Bo, et al. Research and application of enhanced soil-free phase bionic oil based drilling fluid technology[J]. Drilling and Production Technology, 2024, 47(2): 93-103. | |
| [65] | 吴雄军, 林永学, 宋碧涛, 等. 顺北油气田奥陶系破碎性地层油基钻井液技术[J]. 钻井液与完井液, 2020, 37(6): 701-708. |
| WU Xiongjun, LIN Yongxue, SONG Bitao, et al. Oil base drilling fluid technology for drilling broken ordovician formation in Shunbei block[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 701-708. | |
| [66] | HE Yinbo, DU Mingliang, HE Jing, et al. An amphiphilic multiblock polymer as a high-temperature gelling agent for oil-based drilling fluids and its mechanism of action[J]. Gels, 2023, 9(12): 966. |
| [67] | 谢涛, 张磊, 杜明亮, 等. 悬浮稳定关键材料及超高温长效稳定油基钻完井液[J]. 钻井液与完井液, 2024, 41(6): 728-735. |
| XIE Tao, ZHANG Lei, DU Mingliang, et al. Key suspension materials and ultra-high temperature long-term stable oil-based drilling and completion fluids[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 728-735. | |
| [68] | CAROTHERS Wallace H. Studies on polymerization and ring formation Ⅰ. An introduction to the general theory of condensation polymers[J]. Journal of the American Chemical Society, 1929, 51(8): 2548-2559. |
| [69] | DAVOODI Shadfar, Mohammed AL-SHARGABI, WOOD David A, et al. Synthetic polymers: A review of applications in drilling fluids[J]. Petroleum Science, 2024, 21(1): 475-518. |
| [70] | CHEN Eugene Y-X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts[J]. Chemical Reviews, 2009, 109(11): 5157-5214. |
| [71] | ZHONG Hanyi, SHEN Guangcheng, QIU Zhengsong, et al. Minimizing the HTHP filtration loss of oil-based drilling fluid with swellable polymer microspheres[J]. Journal of Petroleum Science and Engineering, 2019, 172: 411-424. |
| [72] | 肖沣峰, 冯学荣, 温建泰, 等. 反相乳液聚合法制备钻井液抗温增黏提切剂及其性能评价[J]. 精细石油化工, 2022, 39(3): 10-14. |
| XIAO Fengfeng, FENG Xuerong, WEN Jiantai, et al. Synthesis of temperature-resistant viscosifier by reversed-phase emulsion polymerization and evaluation of its performance in drilling fluid[J]. Speciality Petrochemicals, 2022, 39(3): 10-14. | |
| [73] | WANG Lanjie. Preparation and application of viscosifier for environmentally friendly oil-based drilling fluid[J]. Chemistry and Technology of Fuels and Oils, 2015, 51(5): 539-544. |
| [74] | 韩子轩. 合成基钻井液流型调节剂的研制及其作用机理[J]. 钻井液与完井液, 2020, 37(2): 148-152. |
| HAN Zixuan. Development and working mechanism of flow pattern enhancer for synthetic base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 148-152. | |
| [75] | SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4): 764-769. |
| [76] | MIKHIENKOVA E I, LYSAKOV S V, NEVEROV A L, et al. Experimental study on the influence of nanoparticles on oil-based drilling fluid properties[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109452. |
| [77] | Maliheh DARGAHI-ZABOLI, SAHRAEI Eghbal, POURABBAS Behzad. Hydrophobic silica nanoparticle-stabilized invert emulsion as drilling fluid for deep drilling[J]. Petroleum Science, 2017, 14(1): 105-115. |
| [78] | HAJIABADI Seyed Hasan, AGHAEI Hamed, Mina KALATEH-AGHAMOHAMMADI, et al. A comprehensive empirical, analytical and tomographic investigation on rheology and formation damage behavior of a novel nano-modified invert emulsion drilling fluid[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106257. |
| [79] | YANG Guangbin, ZHAO Junhua, WANG Xue, et al. Temperature-sensitive amphiphilic nanohybrid as rheological modifier of water-in-oil emulsion drilling fluid: Preparation and performance analysis[J]. Geoenergy Science and Engineering, 2023, 228: 211934. |
| [80] | ARAIN Aftab Hussain, RIDHA Syahrir, ILYAS Suhaib Umer, et al. Evaluating the influence of graphene nanoplatelets on the performance of invert emulsion drilling fluid in high-temperature wells[J]. Journal of Petroleum Exploration and Production Technology, 2022, 12(9): 2467-2491. |
| [81] | ARAIN Aftab Hussain, RIDHA Syahrir, MOHYALDINN Mysara Eissa, et al. Improving the performance of invert emulsion drilling fluid using boron nitride and graphene nanoplatelets for drilling of unconventional high-temperature shale formations[J]. Journal of Molecular Liquids, 2022, 363: 119806. |
| [82] | ZHAO Nana, YAN Liemei, ZHAO Xiaoyi, et al. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications[J]. Chemical Reviews, 2019, 119(3): 1666-1762. |
| [83] | 郭雷, 李琛. 淀粉/黏土纳米复合材料应用进展[J]. 化工新型材料, 2024, 52(11): 37-42. |
| GUO Lei, LI Chen. Starch/clay nanocomposites application progress[J]. New Chemical Materials, 2024, 52(11): 37-42. | |
| [84] | RAJI Marya, MEHDI MEKHZOUM Mohamed EL, RODRIGUE Denis, et al. Effect of silane functionalization on properties of polypropylene/clay nanocomposites[J]. Composites Part B: Engineering, 2018, 146: 106-115. |
| [85] | JIA Qingxiu, WU Youping, WANG Yiqing, et al. Enhanced interfacial interaction of rubber/clay nanocomposites by a novel two-step method[J]. Composites Science and Technology, 2008, 68(3): 1050-1056. |
| [86] | HOJIYEV Rustam, ULCAY Yusuf, HOJAMBERDIEV Mirabbos, et al. Hydrophobicity and polymer compatibility of POSS-modified Wyoming Na-montmorillonite for developing polymer-clay nanocomposites[J]. Journal of Colloid and Interface Science, 2017, 497: 393-401. |
| [87] | LEE Kyung Min, HAN Chang Dae. Rheology of organoclay nanocomposites: Effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay[J]. Macromolecules, 2003, 36(19): 7165-7178. |
| [88] | WANG Xiaoliang, GAO Yun, MAO Kanmi, et al. Unusual rheological behavior of liquid polybutadiene rubber/clay nanocomposite gels: The role of polymer-clay interaction, clay exfoliation, and clay orientation and disorientation[J]. Macromolecules, 2006, 39(19): 6653-6660. |
| [89] | BANIASADI Hossein, TRIFOL Jon, RANTA Anton, et al. Exfoliated clay nanocomposites of renewable long-chain aliphatic polyamide through in situ polymerization[J]. Composites Part B: Engineering, 2021, 211: 108655. |
| [90] | KIM Se Hoon, KIM Sung Chul. Synthesis and properties of poly(ethylene terephthalate)/clay nanocomposites by in situ polymerization[J]. Journal of Applied Polymer Science, 2007, 103(2): 1262-1271. |
| [91] | GU Shuying, REN Jie, WANG Qinfeng. Rheology of poly(propylene)/clay nanocomposites[J]. Journal of Applied Polymer Science, 2004, 91(4): 2427-2434. |
| [92] | MORARIU Simona, TEODORESCU Mirela, BERCEA Maria. Rheological investigation of polymer/clay dispersions as potential drilling fluids[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110015. |
| [93] | HYUN Yang H, Sung T LIM, CHOI Hyoung J, et al. Rheology of poly(ethylene oxide)/organoclay nanocomposites[J]. Macromolecules, 2001, 34(23): 8084-8093. |
| [1] | ZHOU Muyan, LI Kai, XIE Zhengyun, SUN Yanlin. Application and performance evaluation of novel polysaccharide-based binary rheological modifier in the suspension of perfume oil microcapsules [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5265-5276. |
| [2] | Yi PAN, Chen XIA, Shuangchun YANG, Xin MA, Abubakar Rana MUHUMMAD, Zhanquan SU. Research progress on high temperature water-based fracturing fluid [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1913-1920. |
| [3] | SHEN Juan,JIN Bo,JIANG Qiying,HU Yamin,ZHONG Guoqing,HUO Jichuan. Preparation,properties and applications of hydroxyapatite/synthetic polymer composites [J]. Chemical Industry and Engineering Progree, 2011, 30(8): 1749-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |