Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6676-6686.DOI: 10.16085/j.issn.1000-6613.2023-0803
• Resources and environmental engineering • Previous Articles
YANG Youwei1,2,3(), ZENG Yiting1,2, GUO Changsheng3, LUO Yuxia1,2, GAO Yan1,2, WANG Chunying1,2()
Received:
2023-05-15
Revised:
2023-07-21
Online:
2024-01-08
Published:
2023-12-25
Contact:
WANG Chunying
杨有威1,2,3(), 曾亦婷1,2, 郭昌胜3, 罗玉霞1,2, 高艳1,2, 王春英1,2()
通讯作者:
王春英
作者简介:
杨有威(1998—),男,硕士研究生,研究方向为废水处理与资源化技术。E-mail:1287476942@qq.com。
基金资助:
CLC Number:
YANG Youwei, ZENG Yiting, GUO Changsheng, LUO Yuxia, GAO Yan, WANG Chunying. Preparation of Prussian blue and its activation of PMS for degrading bisphenol S[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6676-6686.
杨有威, 曾亦婷, 郭昌胜, 罗玉霞, 高艳, 王春英. 类普鲁士蓝的制备及其活化PMS降解双酚S[J]. 化工进展, 2023, 42(12): 6676-6686.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0803
污染物 | 浓度 /mg·L-1 | 去除时间 /min | 去除率 /% | 去除速率 /mg·min-1 | 参考文献 |
---|---|---|---|---|---|
双酚S | 20.0 | 40 | 73.77 | 0.3689 | 本文 |
双酚S | 20.0 | 120 | 84.5 | 0.1408 | [ |
双酚S | 5.0 | 30 | 97.7 | 0.1628 | [ |
双酚S | 5.0 | 60 | 92.8 | 0.0773 | [ |
双酚S | 2.5 | 90 | 100.0 | 0.0278 | [ |
双酚S | 10.0 | 150 | 97.0 | 0.0647 | [ |
污染物 | 浓度 /mg·L-1 | 去除时间 /min | 去除率 /% | 去除速率 /mg·min-1 | 参考文献 |
---|---|---|---|---|---|
双酚S | 20.0 | 40 | 73.77 | 0.3689 | 本文 |
双酚S | 20.0 | 120 | 84.5 | 0.1408 | [ |
双酚S | 5.0 | 30 | 97.7 | 0.1628 | [ |
双酚S | 5.0 | 60 | 92.8 | 0.0773 | [ |
双酚S | 2.5 | 90 | 100.0 | 0.0278 | [ |
双酚S | 10.0 | 150 | 97.0 | 0.0647 | [ |
1 | 余翠, 武琳, 陈忠, 等. 双酚S对高脂饮食斑马鱼脂代谢的影响及机制[J]. 南京医科大学学报(自然科学版), 2020, 40(7): 981-985, 1020. |
YU Cui, WU Lin, CHEN Zhong, et al. Effects and mechanism of BPS on lipid metabolism of zebrafish with high-fat diet[J]. Journal of Nanjing Medical University (Natural Sciences), 2020, 40(7): 981-985, 1020. | |
2 | YAMAZAKI Eriko, YAMASHITA Nobuyoshi, TANIYASU Sachi, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122: 565-572. |
3 | JIN Hangbiao, ZHU Lingyan. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China[J]. Water Research, 2016, 103: 343-351. |
4 | JI Kyunghee, HONG Seongjin, Younglim KHO, et al. Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish[J]. Environmental Science & Technology, 2013, 47(15): 8793-8800. |
5 | HUANG Wei, ZHU Lin, ZHAO Chao, et al. Integration of proteomics and metabolomics reveals promotion of proliferation by exposure of bisphenol S in human breast epithelial MCF-10A cells[J]. The Science of the Total Environment, 2020, 712: 136453. |
6 | GOYAL Nitin, BARMAN Sanghamitra, BULASARA Vijaya Kumar. Efficient removal of bisphenol S from aqueous solution by synthesized nano-zeolite secony mobil-5[J]. Microporous and Mesoporous Materials, 2018, 259: 184-194. |
7 | PELAIA Tiana, RUBIN Alexander M, SEEBACHER Frank. Bisphenol S reduces locomotor performance and modifies muscle protein levels but not mitochondrial bioenergetics in adult zebrafish[J]. Aquatic Toxicology, 2023, 257: 106440. |
8 | IKE M, CHEN M Y, DANZL E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions[J]. Water Science and Technology, 2006, 53(6): 153-159. |
9 | XUE Jingchuan, KANNAN Kurunthachalam. Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA[J]. Science of the Total Environment, 2019, 648: 442-449. |
10 | 李林, 朱登贵, 孙淑敏, 等. 普鲁士蓝及其类似物作为钠离子电池正极材料的研究进展[J]. 分子科学学报, 2023, 39(1): 1-10. |
LI Lin, ZHU Denggui, SUN Shumin, et al. Research progress of Prussian blue and its analogues as cathode materials for sodium ion batteries[J]. Journal of Molecular Science, 2023, 39(1): 1-10. | |
11 | 董沛沛, 冯永强, 王潇, 等. 多孔普鲁士蓝类似物的合成及电催化析氧性能[J]. 精细化工, 2021, 38(4): 823-829. |
DONG Peipei, FENG Yongqiang, WANG Xiao, et al. Synthesis of porous Prussian-blue analogues and electrocatalytic properties for oxygen evolution reaction[J]. Fine Chemicals, 2021, 38(4): 823-829. | |
12 | 黎素, 张博, 谢春生, 等. Bi-FeC2O4复合催化剂活化过硫酸盐降解罗丹明B[J]. 环境科学学报, 2021, 41(7): 2796-2805. |
LI Su, ZHANG Bo, XIE Chunsheng, et al. Catalytic degradation of Rhodamine B by Bi-FeC2O4 composite activated persulfate[J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2796-2805. | |
13 | 李英豪, 郑向前, 高晓亚, 等. CoFe2O4的制备及其活化过一硫酸盐降解磺胺甲噁唑[J]. 精细化工, 2022, 39(5): 1020-1027. |
LI Yinghao, ZHENG Xiangqian, GAO Xiaoya, et al. Preparation of CoFe2O4 and its peroxymonosulfate activation for degradation of sulfamethoxazole[J]. Fine Chemicals, 2022, 39(5): 1020-1027. | |
14 | NIU Lijun, ZHANG Guangming, XIAN Guang, et al. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: Performance, activation mechanism and degradation pathway[J]. Separation and Purification Technology, 2021, 259: 118156. |
15 | YANG Youwei, GUO Changsheng, ZENG Yiting, et al. Peroxymonosulfate activation by CuFe-Prussian blue analogues for the degradation of bisphenol S: Effect, mechanism, and pathway[J]. Chemosphere, 2023, 331: 138748. |
16 | LAI Leiduo, YAN Jianfei, LI Jun, et al. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 343: 676-688. |
17 | 王磊, 成先雄, 连军锋, 等. 尖晶石型c-CuFe2O4催化过硫酸盐降解偶氮染料[J]. 精细化工, 2021, 38(10): 2117-2124. |
WANG Lei, CHENG Xianxiong, LIAN Junfeng, et al. Degradation of azo dye by catalyzed persulfate with spinel c-CuFe2O4 [J]. Fine Chemicals, 2021, 38(10): 2117-2124. | |
18 | GHANBARI Farshid, MORADI Mahsa. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. |
19 | 甄建政,聂士松,潘世元, 等.多维度碳基负载金属催化剂活化PMS降解水中污染物的研究进展[J].化工进展,2022,41(4):1858-1872. |
ZHEN Jianzheng, NIE Shisong, PAN Shiyuan, et al. Research progress on advanced activation of peroxymonosulfate by multidimensional carbon-supported metal catalyst for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1858-1872. | |
20 | HUANG Yaohui, HUANG Yi-Fong, HUANG Chuning, et al. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1110-1118. |
21 | 董康妮, 谢更新, 晏铭, 等. 磺化生物炭活化过硫酸盐去除水中盐酸四环素[J]. 中国环境科学, 2022, 42(8): 3650-3657. |
DONG Kangni, XIE Gengxin, YAN Ming, et al. Removal of tetracycline hydrochloride from aqueous solutions by sulfonated biochar-activated persulfate[J]. China Environmental Science, 2022, 42(8): 3650-3657. | |
22 | HAMMOUDA Samia Ben, ZHAO Feiping, SAFAEI Zahra, et al. Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: Influence of co-existing chemicals and UV irradiation[J]. Applied Catalysis B: Environmental, 2018, 233: 99-111. |
23 | LOU Xiaoyi, WU Liuxi, GUO Yaoguang, et al. Peroxymonosulfate activation by phosphate anion for organics degradation in water[J]. Chemosphere, 2014, 117: 582-585. |
24 | ZHANG Tao, ZHU Haibo, Jean-Philippe CROUÉ. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism[J]. Environmental Science & Technology, 2013, 47(6): 2784-2791. |
25 | 朱紫琦, 李立, 徐铭骏, 等. 菱形片状铁锰催化剂活化过硫酸盐降解四环素[J]. 中国环境科学, 2021, 41(11): 5142-5152. |
ZHU Ziqi, LI Li, XU Mingjun, et al. Rhombic sheet iron-manganese catalyst-activating peroxymonosulfate for tetracycline degradation[J]. China Environmental Science, 2021, 41(11): 5142-5152. | |
26 | 徐铭骏, 郭兆春, 李立, 等. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2): 1043-1053. |
XU Mingjun, GUO Zhaochun, LI Li, et al. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1043-1053. | |
27 | LU Hongtao, SUI Minghao, YUAN Bojie, et al. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals[J]. Chemical Engineering Journal, 2019, 357: 140-149. |
28 | XU Haodan, WANG Da, MA Jun, et al. A superior active and stable spinel sulfide for catalytic peroxymonosulfate oxidation of bisphenol S[J]. Applied Catalysis B: Environmental, 2018, 238: 557-567. |
29 | HU Enlai, FENG Yafei, NAI Jianwei, et al. Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting[J]. Energy & Environmental Science, 2018, 11(4): 872-880. |
30 | LI Miaoqing, LUO Rui, WANG Chaohai, et al. Iron-tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation[J]. Chemical Engineering Journal, 2019, 372: 774-784. |
31 | ZHU Shijun, WANG Wei, XU Yongpeng, et al. Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2019, 365: 99-110. |
32 | GUO Ruonan, CHEN Ying, NENGZI Lichao, et al. In situ preparation of carbon-based Cu-Fe oxide nanoparticles from CuFe Prussian blue analogues for the photo-assisted heterogeneous peroxymonosulfate activation process to remove lomefloxacin[J]. Chemical Engineering Journal, 2020, 398: 125556. |
33 | LU Sen, WANG Guanlong, CHEN Shuo, et al. Heterogeneous activation of peroxymonosulfate by LaCo1- x Cu x O3 perovskites for degradation of organic pollutants[J]. Journal of Hazardous Materials, 2018, 353: 401-409. |
34 | 胡明珠. 钴铁双金属催化剂活化过硫酸盐降解有机污染物的性能与机理[D]. 杭州: 浙江大学, 2021. |
HU Mingzhu. Performance and mechanism of cobalt-iron bimetallic catalyst activating persulfate to degrade organic pollutants[D]. Hangzhou: Zhejiang University, 2021. | |
35 | WANG Bingyu, LI Qiaoqiao, LV Ying, et al. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation[J]. Chemical Engineering Journal, 2021, 416: 129162. |
36 | LIU Yang, GUO Hongguang, ZHANG Yongli, et al. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation[J]. Environmental Pollution, 2019, 252: 1042-1050. |
37 | CAI Jing, ZHANG Yan. Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron[J]. Environmental Science and Pollution Research, 2022, 29(6): 8281-8293. |
38 | WEI Junyan, YIN Linning, QU Ruijuan, et al. Experimental and quantum chemical study on the transformation behavior of bisphenol S by radical-driven persulfate oxidation[J]. Environmental Science: Water Research & Technology, 2022, 8(1): 116-126. |
39 | SHAO Penghui, DUAN Xiaoguang, XU Jun, et al. Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S[J]. Journal of Hazardous Materials, 2017, 322: 532-539. |
40 | HUANG Quanlong, CHEN Congjin, ZHAO Xilian, et al. Malachite green degradation by persulfate activation with CuFe2O4@biochar composite: Efficiency, stability and mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105800. |
[1] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[2] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[3] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[4] | LI Ya’nan, NIAN Pei, XU Nan, LUO Haiyu, WEI Yibin. Research progress of MXene-based membrane materials for precision fluid separation [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5249-5258. |
[5] | XU Tianyuan, ZHENG Xi, WANG Lianjuan, CHEN Ting, WEI Xinpeng. Persulfate activation by coke powder for aniline degradation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3314-3323. |
[6] | MAO Menglei, SUN Danyang, MENG Zihui, LIU Wenfang. Enzyme immobilization on graphene oxide and transition metal carbon/nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1941-1955. |
[7] | JIA Yanping, XUE Dongqi, LIU Qifan, ZHANG Haifeng, LI Zheng, ZHANG Lanhe. Sulfite activation technology and its application in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 418-426. |
[8] | SHEN Muyuan, SHAO Yijia, HUANG Bin, LIU Yanchen, LIAO Shijun. Progress on the prussian blue analogues as cathode electrode in potassium-ion batteries [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 279-289. |
[9] | TIAN Tingting, LI Chaoyang, WANG Shaodong, LU Hui, LI Xindong, MAO Yanli, SONG Zhongxian, ZHU Xinfeng. Research progress of transition metal activated persulfate to degrade organic wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488. |
[10] | HUANG Guoyong, LI Yi, QU Chenwei, SUN Xiaohua, LI Botian, GE Lei, YE Haimu, ZHANG Hongmei. Recent development of transition metal disulfides and their composites for thermal batteries [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2161-2174. |
[11] | SHI Cai, SHI Junming, TENG Min, WANG Weicong, EQI Malin, HUANG Zhanhua. Recent advances in the photocatalytic mechanism of transition metal phosphides [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6079-6093. |
[12] | WANG Chunxia, SONG Zhaoyi, NI Jiping, PAN Zongwei, HUANG Guoyong. Progress of electrocatalytic hydrogen evolution reaction catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5523-5534. |
[13] | Ziyi ZHU,Peng DONG,Jufeng ZHANG,Yongtai LI,Jie XIAO,Xiaoyuan ZENG,Xue LI,Yingjie ZHANG. Research progress on modification of cathode materials for new generation energy storage sodium-ion batteries [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1043-1056. |
[14] | Xia GU, Ruofei WANG, Huaiqi SHAO, Tao JIANG. Preparation of poly-α-olefin synthetic oil through 1-decene oligomerization catalyzed by aluminium chloride promoted by metal chloride [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4497-4502. |
[15] | Ning GAO,Yukang ZHOU,Shubao SHEN,Yingwen CHEN. Research progress in application of cadmium-containing compounds in photocatalysis [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5372-5379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |