Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 6093-6101.DOI: 10.16085/j.issn.1000-6613.2022-2387
• Resources and environmental engineering • Previous Articles
WANG Yingmei1,2,3(), LIU Shenghao1,2,3, TENG Yadong1,2,3, WANG Lijin1,2,3, JIAO Wenze1,2,3
Received:
2022-12-30
Revised:
2023-01-31
Online:
2023-12-15
Published:
2023-11-20
Contact:
WANG Yingmei
王英梅1,2,3(), 刘生浩1,2,3, 滕亚栋1,2,3, 王立瑾1,2,3, 焦雯泽1,2,3
通讯作者:
王英梅
作者简介:
王英梅(1987—),女,副教授,研究方向为气体水合物生成与分解动力学。E-mail:wymch@lzb.ac.cn。
基金资助:
CLC Number:
WANG Yingmei, LIU Shenghao, TENG Yadong, WANG Lijin, JIAO Wenze. Effect of NaCl concentration on the formation and stability of CO2 hydrate[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6093-6101.
王英梅, 刘生浩, 滕亚栋, 王立瑾, 焦雯泽. NaCl浓度对CO2水合物形成与稳定性的影响[J]. 化工进展, 2023, 42(11): 6093-6101.
材料 | 参数 | 厂商 |
---|---|---|
二氧化碳气体(CO2) | 分析纯度:99.99% | 兰州中科凯特有限公司 |
去离子水(H2O/冰粉) | 电导率:18.25MΩ·cm | 自制 |
氯化钠(NaCl) | 分析纯度:99.99% | 国药集团化学试剂有限公司 |
硅胶 | 粒径:0.5~1mm,合格率:≥99% | 青岛宸容新材料有限公司 |
材料 | 参数 | 厂商 |
---|---|---|
二氧化碳气体(CO2) | 分析纯度:99.99% | 兰州中科凯特有限公司 |
去离子水(H2O/冰粉) | 电导率:18.25MΩ·cm | 自制 |
氯化钠(NaCl) | 分析纯度:99.99% | 国药集团化学试剂有限公司 |
硅胶 | 粒径:0.5~1mm,合格率:≥99% | 青岛宸容新材料有限公司 |
NaCl 浓度/g·L-1 | 一次加压 生成量/mol | 二次加压 生成量/mol | 总生成量/mol | 二次加压/ 一次加压 |
---|---|---|---|---|
0 | 0.2586 | 0.2665 | 0.5251 | 1.0306 |
0.18 | 0.2701 | 0.2757 | 0.5458 | 1.0207 |
0.23 | 0.2671 | 0.2741 | 0.5412 | 1.0261 |
0.28 | 0.2722 | 0.2808 | 0.5530 | 1.0318 |
0.33 | 0.2741 | 0.2703 | 0.5444 | 0.9862 |
0.38 | 0.2815 | 0.2686 | 0.5501 | 0.9543 |
0.43 | 0.2693 | 0.2697 | 0.5390 | 1.0012 |
0.48 | 0.2573 | 0.2608 | 0.5181 | 1.0134 |
0.53 | 0.2402 | 0.2505 | 0.4907 | 1.0431 |
NaCl 浓度/g·L-1 | 一次加压 生成量/mol | 二次加压 生成量/mol | 总生成量/mol | 二次加压/ 一次加压 |
---|---|---|---|---|
0 | 0.2586 | 0.2665 | 0.5251 | 1.0306 |
0.18 | 0.2701 | 0.2757 | 0.5458 | 1.0207 |
0.23 | 0.2671 | 0.2741 | 0.5412 | 1.0261 |
0.28 | 0.2722 | 0.2808 | 0.5530 | 1.0318 |
0.33 | 0.2741 | 0.2703 | 0.5444 | 0.9862 |
0.38 | 0.2815 | 0.2686 | 0.5501 | 0.9543 |
0.43 | 0.2693 | 0.2697 | 0.5390 | 1.0012 |
0.48 | 0.2573 | 0.2608 | 0.5181 | 1.0134 |
0.53 | 0.2402 | 0.2505 | 0.4907 | 1.0431 |
1 | BOZZANO Giulia, MANENTI Flavio. Efficient methanol synthesis: Perspectives, technologies and optimization strategies[J]. Progress in Energy and Combustion Science, 2016, 56: 71-105. |
2 | DUAN Huiming, WANG Siqi, HE Chenglin, et al. Application of a novel grey Bernoulli model to predict the global consumption of renewable energy[J]. Energy Reports, 2021, 7: 7200-7211. |
3 | NGUYEN N N, LA V T, HUYNH C D, et al. Technical and economic perspectives of hydrate-based carbon dioxide capture[J]. Applied Energy, 2022, 307: 118237. |
4 | 樊栓狮, 尤莎莉, 郎雪梅, 等. 笼型水合物膜分离和捕获二氧化碳研究进展[J]. 化工进展, 2020, 39(4): 1211-1218. |
FAN Shuanshi, YOU Shali, LANG Xuemei, et al. Separation and capture carbon dioxide by clathrate-hydrate membranes: A review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1211-1218. | |
5 | 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143. |
WANG Lei, FANG Guiying, YANG Qingyuan. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening[J]. CIESC Journal, 2019, 70(3): 1135-1143. | |
6 | SUN Q B, KANG Y T. Review on CO2 hydrate formation/dissociation and its cold energy application[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 478-494. |
7 | DASHTI H, ZHEHAO Y L, LOU X. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 195-207. |
8 | ZHANG Lunxiang, YANG Lei, WANG Jiaqi, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate[J]. Chemical Engineering Journal, 2017, 308: 40-49. |
9 | XU Chungang, YU Yisong, XIE Wenjun, et al. Study on developing a novel continuous separation device and carbon dioxide separation by process of hydrate combined with chemical absorption[J]. Applied Energy, 2019, 255: 113791. |
10 | CHUNG W, ROH K, LEE J H. Design and evaluation of CO2 capture plants for the steelmaking industry by means of amine scrubbing and membrane separation[J]. International Journal of Greenhouse Gas Control, 2018, 74: 259-270. |
11 | WANG Tian, ZHANG Lunxiang, SUN Lingjie, et al. Methane recovery and carbon dioxide storage from gas hydrates in fine marine sediments by using CH4/CO2 replacement[J]. Chemical Engineering Journal, 2021, 425: 131562. |
12 | WANG Yanhong, LANG Xuemei, FAN Shuanshi. Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas[J]. Journal of Energy Chemistry, 2013, 22(1): 39-47. |
13 | SUN Ronghui, YANG Mingjun, SONG Yongchen. Effect of NaCl concentration on depressurization-induced methane hydrate dissociation near ice-freezing point: Associated with metastable phases[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104304. |
14 | Junghoon MOK, CHOI Wonjung, KIM Sungwoo, et al. NaCl-induced enhancement of thermodynamic and kinetic CO2 selectivity in CO2+N2 hydrate formation and its significance for CO2 sequestration[J]. Chemical Engineering Journal, 2023, 451: 138633. |
15 | SMIT Berend. Molecular simulations of fluid phase equilibria[J]. Fluid Phase Equilibria, 1996, 116(1/2): 249-256. |
16 | NASEH Moeinoddin, FALAMAKI Cavus, MOHEBBI Vahid. Equilibrium conditions of CO2+C3H8 hydrates in pure and saline water solutions of NaCl[J]. Journal of Natural Gas Science and Engineering, 2022, 106: 104734. |
17 | WANG Jianlong, SUN Jinsheng, WANG Ren, et al. Mechanisms of synergistic inhibition of NaCl and glycine mixtures on methane hydrate formation: Experimental and molecular dynamic simulation[J]. Gas Science and Engineering, 2023: 204880. |
18 | HOLZAMMER Christine, FINCKENSTEIN Agnes, WILL Stefan, et al. How sodium chloride salt inhibits the formation of CO2 gas hydrates[J]. The Joural of Physical Chemistry B, 2022, 120(9): 2452-2459. |
19 | CHOI Wonjung, LEE Yohan, Junghoon MOK, et al. Thermodynamic and kinetic influences of NaCl on HFC-125a hydrates and their significance in gas hydrate-based desalination[J]. Chemical Engineering Journal, 2019, 358: 598-605. |
20 | SUN Xian, LIU Dejun, CHANG Dongchao, et al. Analysis of natural gas hydrate formation in sodium dodecyl sulfate and quartz sand complex system under saline environment[J]. Petroleum Science and Technology, 2018, 36(14): 1073-1079. |
21 | XU Jiafang, DU Shuai, HAO Yongchao, et al. Molecular simulation study of methane hydrate formation mechanism in NaCl solutions with different concentrations[J]. Chemical Physics, 2021, 551: 111323. |
22 | 张金锋. 甲烷水合物在不同体系中的生成动力学研究[D]. 杭州: 浙江工业大学, 2003. |
ZHANG Jinfeng. Research on the kinetics of methane hydrate formation in various systems[D]. Hangzhou: Zhejiang University of Technology, 2003. | |
23 | ZHANG Baoyong, WU Qiang, GAO Xia, et al. Memory effect on hydrate formation and influential factors of its sustainability in new hydrate-based coal mine methane separation method[J]. International Journal of Environment and Pollution, 2013, 53(3/4): 201. |
24 | SMITH J M, VAN NESS H C, ABBOTT M M, et al. Introduction to chemical engineering thermodynamics[M]. Eighth edition. New York, NY: McGraw-Hill Education, 2018. |
25 | SUN Duo, ENGLEZOS Peter. Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions[J]. International Journal of Greenhouse Gas Control, 2014, 25: 1-8. |
26 | NATARAJAN V, BISHNOI P R, KALOGERAKIS N. Induction phenomena in gas hydrate nucleation[J]. Chemical Engineering Science, 1994, 49(13): 2075-2087. |
27 | DENDY S E. Clathrate hydrates of natural gases[M]. Boca Raton, FL: CRC Press, 2008. |
28 | 张强, 吴强, 张保勇, 等. NaCl-SDS复合溶液中多组分瓦斯水合物成核动力学机理[J]. 煤炭学报, 2015, 40(10): 2430-2436. |
ZHANG Qiang, WU Qiang, ZHANG Baoyong, et al. Nucleation kinetics mechanism of multi-component mine gas hydrate in NaCl-SDS mixed solutions[J]. Journal of China Coal Society, 2015, 40(10): 2430-2436. | |
29 | BAI Dongsheng, WU Ziyan, LIN Cijie, et al. The effect of aqueous NaCl solution on methane hydrate nucleation and growth[J]. Fluid Phase Equilibria, 2019, 487: 76-82. |
30 | WANG Xiaohui, WANG Yunfei, XIE Yan, et al. Study on the decomposition conditions of gas hydrate in quartz sand-brine mixture systems[J]. The Journal of Chemical Thermodynamics, 2019, 131: 247-253. |
31 | 曹学文, 杨凯然, 夏闻竹, 等. CO2水合物分解实验及分解速率模型[J]. 天然气工业, 2021, 41(7): 152-159. |
CAO Xuewen, YANG Kairan, XIA Wenzhu, et al. Dissociation experiment and dissociation rate model of CO2 hydrate[J]. Natural Gas Industry, 2021, 41(7): 152-159. | |
32 | 陈雪萍, 张鹏, 吴青柏. “自保护”态CO2水合物分解动力及影响因素[J]. 天然气地球科学, 2020, 31(2): 184-193. |
CHEN Xueping, ZHANG Peng, WU Qingbai. Decomposition dynamics and influencing factors of CO2 hydrate in self-preservation state[J]. Natural Gas Geoscience, 2020, 31(2): 184-193. | |
33 | FALENTY A, KUHS W F, GLOCKZIN M, et al. “self-preservation” of CH4 hydrates for gas transport technology: Pressure-temperature dependence and ice microstructures[J]. Energy & Fuels, 2014, 28(10): 6275-6283. |
34 | YAGASAKI Takuma, MATSUMOTO Masakazu, TANAKA Hideki. Effects of thermodynamic inhibitors on the dissociation of methane hydrate: A molecular dynamics study[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(48): 32347-32357. |
35 | QURESHI M F, KHANDELWAL H, USADI A, et al. CO2 hydrate stability in oceanic sediments under brine conditions[J]. Energy, 2022, 256: 124625. |
[1] | WANG Yinmei, ZHANG Zhaohui, LIU Shenghao, JIAO Wenze, WANG Lijin, TENG Yadong, LIU Jie. Atmospheric pressure decomposition of carbon dioxide hydrate in accelerator system [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 141-149. |
[2] | HUANG Ye, YAN Xing, WU Qiaowei, CHAI Xiaotao, PAN Gongying, ZHANG Jinfeng, LI Xiangqian. Study of silica gel regeneration applied on cyclosporine A column chromatography [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 461-468. |
[3] | WANG Zepeng, YUAN Zhongxian, WANG Jie, WEN Xin, LIU Yimo. Effect of particulate diameter of silica gel on performance of solar adsorption refrigeration system [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3545-3552. |
[4] | MA Xingxing, FENG Yakai. Improvement of thermal oxygen aging resistance of silicon gel by adding modified cerium oxide with coupling agent [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 874-880. |
[5] | WANG Yingmei, NIU Aili, ZHANG Zhaohui, ZHAN Jing, ZHANG Xuemin. Review of rapid generation methods of carbon dioxide hydrate [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 117-125. |
[6] | Huaming MAO,Bin ZHANG,Shuai CUI,Xiaoning TANG,Su’e YANG,Xianfa JIANG. Preparation and antibacterial method of Cu2+/Tb2O3 antibacterial silica gel [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5024-5032. |
[7] | ZHOU Shidong, CHEN Xiaokang, BIAN Hui, HE Chengyuan, WANG Shuli, LÜ Xiaofang. CO2 hydrate formation in pipeline and its plugging characteristics [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4250-4256. |
[8] | XIAO Haiping, QI Chao, SUN Baomin. Reaction kinetics calculations of gaseous NaCl sulfation pathway when burning high alkali coal [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1760-1766. |
[9] | YU Dongmei, CHEN Shuo, WANG Shuli, RAO Yongchao, LÜ Xiaofang. Experiment on attapulgite for CO2 hydrate formation kinetics [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 546-553. |
[10] | DAI Mimi, ZOU Tonghua, YAN Lei, JIA Gu. Experimental investigation on the performances of different desiccant wheels [J]. Chemical Industry and Engineering Progree, 2015, 34(07): 1841-1845. |
[11] | XIN Feng, YUAN Zhongxian, WANG Wenchao. Adsorption and desorption characteristics of allochroic silica gel and ZSM-5 zeolite to water [J]. Chemical Industry and Engineering Progree, 2015, 34(06): 1730-1736. |
[12] | LEI Ming,WANG Yan,ZHAO Hao,PENG Qijun . Study on the reaction of type C silica gel and KH-560 coupling agent [J]. Chemical Industry and Engineering Progree, 2012, 31(06): 1263-1268. |
[13] | HU Wenna,SU Baogen,SU Yun,YANG Yiwen,REN Qilong. Purification of cholesterol from lanolin by column chromatography [J]. Chemical Industry and Engineering Progree, 2011, 30(7): 1426-. |
[14] | ZHANG Cuiling,ZHANG Peng,LIU Wenxia,LI Li,LIU Qiang. Preparation process of a high purity macroporous silica gel [J]. Chemical Industry and Engineering Progree, 2011, 30(6): 1313-. |
[15] | ZHANG Cuiling,LIU Wenxia,ZHANG Peng,LIU Qiang,LI Li. Preparation of novel chromium-based catalyst and study on its carrier performance [J]. Chemical Industry and Engineering Progree, 2011, 30(6): 1253-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 530
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 141
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |