Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5707-5721.DOI: 10.16085/j.issn.1000-6613.2022-2368
• Industrial catalysis • Previous Articles Next Articles
BU Tingting1,2(), DONG Bingli2, ZHOU Ying1, MA An3(), ZHOU Hongjun1,4,5()
Received:
2022-12-28
Revised:
2023-04-25
Online:
2023-12-15
Published:
2023-11-20
Contact:
MA An, ZHOU Hongjun
卜婷婷1,2(), 董炳利2, 周颖1, 马安3(), 周红军1,4,5()
通讯作者:
马安,周红军
作者简介:
卜婷婷(1989—),女,博士研究生,研究方向为低碳烃脱氢催化剂开发。E-mail:lz_butingting@petrochina.com.cn。
基金资助:
CLC Number:
BU Tingting, DONG Bingli, ZHOU Ying, MA An, ZHOU Hongjun. Advances in MoVTeNbO x catalyst for oxidative dehydrogenation of ethane to ethylene[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5707-5721.
卜婷婷, 董炳利, 周颖, 马安, 周红军. MoVTeNbO x 催化剂应用于乙烷氧化脱氢制乙烯的研究进展[J]. 化工进展, 2023, 42(11): 5707-5721.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2368
催化剂 | 反应条件 | 转化率(摩尔分数)/% | 选择性(摩尔分数)/% |
---|---|---|---|
MoVTeNbO(M1)[ | 400℃,C2H6/O2/He=30/20/50 | 58.4 | 91.2 |
M1(机械处理)[ | 400℃,C2H6/O2/He=30/20/50 | 57.6 | 90.6 |
M1-1.0(1.0表示草酸浓度)[ | 400℃,C2H6/O2/He=30/20/50(摩尔比),v=30mL/min | 73 | 85 |
MoVTeNbCeO-0.1[ | 400℃,C2H6/O2/(He+N2)=10/5/85 | 56.2 | 95.4 |
M1/CeO2[ | 400℃,C2H6/O2/He=30/20/50(摩尔比),v=30mL/min | 59.4 | 89.3 |
M1@CeO2@堇青石[ | 400℃,C2H6/O2/He=30/20/50 | 60 | 85 |
MoVTeNbBiO[ | 400℃,C2H6/O2/N2=10/10/80(体积比),v=30mL/min | 50 | 94 |
Cr/CeO2[ | 740℃,C2H6/CO2=1/7,v(C2H6)=10mL/min,v(CO2)=70mL/min | 36.6 | 97 |
Cr/TiO2-ZrO2[ | 700℃,C2H6/O2/N2=10/50/40(体积比),v=75mL/min | 48 | 95 |
Cr/MCM-41[ | 700℃,C2H6/O2/N2=10/50/40,v=75mL/min | 56 | 94 |
Nb-NiO[ | 450℃,C2H6/O2/He=5/5/90(摩尔比) | 9 | 84 |
Nb2O5-NiO/Ni-泡沫[ | 450℃,C2H6/O2/N2=1/1/8(体积比),GHSV=9000h-1 | 60 | 68 |
Nd2O3-LiCl/SZ[ | 650℃,C2H6/O2/N2=1/1/8(体积比),v=60mL/min | 93 | 83 |
NiO/Al2O3[ | 450℃,C2H6/O2/N2=10/10/80(体积比) | 59.1 | 65.3 |
NiFe-1.0/γ-Al2O3[ | 400℃,C2H6/O2=1./1(体积比),W/F=0.48g·s/mL | 41.7 | 75.0 |
Ni40Si40Al[ | 400℃,C2H6/O2=1(体积比),W/F=0.6g·s/cm3 | 17.4 | 78.3 |
P0.15‐Ni‐Al‐O[ | 475℃,C2H6/O2/N2=10/10/80(体积比) | 31.9 | 61.4 |
VO x /c-Al2O3[ | 600℃,C2H6=20ml/次(脉冲进料),反应时间35s | 25.84 | 61.80 |
VCoAPO-18[ | 600℃,C2H6/O2/He=4/8/88(摩尔比) | 27.8 | 74.3 |
Ga2O3/HZSM-5[ | 650℃,C2H6/CO2/Ar=3/15/82(体积比),v=30mL/min | 15 | 94 |
MoO3-TiO2[ | 550℃,C2H6/O2/He=1/1/8(体积比),GHSV=10000mL/g·h | 55.2 | 92.1 |
Na2WO4/Mn/B5.0Si95[ | 700℃,C2H6/O2/N2=1.5/1/2(体积比),GHSV=15000h-1 | 66.12 | 70.32 |
催化剂 | 反应条件 | 转化率(摩尔分数)/% | 选择性(摩尔分数)/% |
---|---|---|---|
MoVTeNbO(M1)[ | 400℃,C2H6/O2/He=30/20/50 | 58.4 | 91.2 |
M1(机械处理)[ | 400℃,C2H6/O2/He=30/20/50 | 57.6 | 90.6 |
M1-1.0(1.0表示草酸浓度)[ | 400℃,C2H6/O2/He=30/20/50(摩尔比),v=30mL/min | 73 | 85 |
MoVTeNbCeO-0.1[ | 400℃,C2H6/O2/(He+N2)=10/5/85 | 56.2 | 95.4 |
M1/CeO2[ | 400℃,C2H6/O2/He=30/20/50(摩尔比),v=30mL/min | 59.4 | 89.3 |
M1@CeO2@堇青石[ | 400℃,C2H6/O2/He=30/20/50 | 60 | 85 |
MoVTeNbBiO[ | 400℃,C2H6/O2/N2=10/10/80(体积比),v=30mL/min | 50 | 94 |
Cr/CeO2[ | 740℃,C2H6/CO2=1/7,v(C2H6)=10mL/min,v(CO2)=70mL/min | 36.6 | 97 |
Cr/TiO2-ZrO2[ | 700℃,C2H6/O2/N2=10/50/40(体积比),v=75mL/min | 48 | 95 |
Cr/MCM-41[ | 700℃,C2H6/O2/N2=10/50/40,v=75mL/min | 56 | 94 |
Nb-NiO[ | 450℃,C2H6/O2/He=5/5/90(摩尔比) | 9 | 84 |
Nb2O5-NiO/Ni-泡沫[ | 450℃,C2H6/O2/N2=1/1/8(体积比),GHSV=9000h-1 | 60 | 68 |
Nd2O3-LiCl/SZ[ | 650℃,C2H6/O2/N2=1/1/8(体积比),v=60mL/min | 93 | 83 |
NiO/Al2O3[ | 450℃,C2H6/O2/N2=10/10/80(体积比) | 59.1 | 65.3 |
NiFe-1.0/γ-Al2O3[ | 400℃,C2H6/O2=1./1(体积比),W/F=0.48g·s/mL | 41.7 | 75.0 |
Ni40Si40Al[ | 400℃,C2H6/O2=1(体积比),W/F=0.6g·s/cm3 | 17.4 | 78.3 |
P0.15‐Ni‐Al‐O[ | 475℃,C2H6/O2/N2=10/10/80(体积比) | 31.9 | 61.4 |
VO x /c-Al2O3[ | 600℃,C2H6=20ml/次(脉冲进料),反应时间35s | 25.84 | 61.80 |
VCoAPO-18[ | 600℃,C2H6/O2/He=4/8/88(摩尔比) | 27.8 | 74.3 |
Ga2O3/HZSM-5[ | 650℃,C2H6/CO2/Ar=3/15/82(体积比),v=30mL/min | 15 | 94 |
MoO3-TiO2[ | 550℃,C2H6/O2/He=1/1/8(体积比),GHSV=10000mL/g·h | 55.2 | 92.1 |
Na2WO4/Mn/B5.0Si95[ | 700℃,C2H6/O2/N2=1.5/1/2(体积比),GHSV=15000h-1 | 66.12 | 70.32 |
催化剂 | 反应条件 | 乙烷转化率/% | 乙烯选择性/% | CO x 选择性/% |
---|---|---|---|---|
MoV0.24Te0.24Nb0.18O x[ | 440℃,常压,C2H6/O2/N2=9/7/84 | 45 | 93 | 7 |
MoV0.25Te0.23Nb0.12O x[ | 400℃,常压,C2H6/O2/He=30/20/50 | 58.4 | 91.2 | 8.8 |
MoV0.25Te0.23Nb0.18O x[ | 400℃,常压,C2H6/O2/He=30/20/50 | 24.2 | 94.6 | 5.4 |
MoV0.27Te0.16Nb0.14O x[ | 380℃,常压,C2H6/O2/He+Ne=30/20/50 | 35 | 92 | 8 |
MoV0.29Nb0.15O x[ | 400℃,常压,C2H6/O2=3/1 | 21 | 70 | 30 |
MoV0.3Te0.23Nb0.12O x[ | 400℃,常压,C2H6/O2/N2=5/5/90 | 55 | 92 | 8 |
MoV0.37Te0.17Nb0.15O x[ | 400℃,常压,C2H6︰O2=75︰25(v/v) | 37 | 85 | 15 |
催化剂 | 反应条件 | 乙烷转化率/% | 乙烯选择性/% | CO x 选择性/% |
---|---|---|---|---|
MoV0.24Te0.24Nb0.18O x[ | 440℃,常压,C2H6/O2/N2=9/7/84 | 45 | 93 | 7 |
MoV0.25Te0.23Nb0.12O x[ | 400℃,常压,C2H6/O2/He=30/20/50 | 58.4 | 91.2 | 8.8 |
MoV0.25Te0.23Nb0.18O x[ | 400℃,常压,C2H6/O2/He=30/20/50 | 24.2 | 94.6 | 5.4 |
MoV0.27Te0.16Nb0.14O x[ | 380℃,常压,C2H6/O2/He+Ne=30/20/50 | 35 | 92 | 8 |
MoV0.29Nb0.15O x[ | 400℃,常压,C2H6/O2=3/1 | 21 | 70 | 30 |
MoV0.3Te0.23Nb0.12O x[ | 400℃,常压,C2H6/O2/N2=5/5/90 | 55 | 92 | 8 |
MoV0.37Te0.17Nb0.15O x[ | 400℃,常压,C2H6︰O2=75︰25(v/v) | 37 | 85 | 15 |
1 | 李月清, 陈庆利. “乙烷制乙烯”产品竞争力分析[J]. 中国石油企业, 2021(10): 41. |
LI Yueqing, CHEN Qingli. Competitiveness analysis of “ethane to ethylene” products[J]. China Petroleum Enterprise, 2021(10): 41. | |
2 | SUN Xiaoying, LI Bo, METIU Horia. Ethane activation by Nb-doped NiO[J]. The Journal of Physical Chemistry C, 2013, 117(45): 23597-23608. |
3 | QIAO A, KALEVARU V N, RADNIK J, et al. Oxidative dehydrogenation of ethane to ethylene over V2O5/Al2O3 catalysts: Effect of source of alumina on the catalytic performance[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18711-18721. |
4 | GAFFNEY Anne M, MASON Olivia M. Ethylene production via oxidative dehydrogenation of ethane using M1 catalyst[J]. Catalysis Today, 2017, 285: 159-165. |
5 | CHU Bozhao, AN Hang, NIJHUIS T A, et al. A self-redox pure-phase M1 MoVTeNbO x /CeO2 nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2015, 329: 471-478. |
6 | CHEN Yuxin, QIAN Shuairen, FENG Kai, et al. Determination of highly active and selective surface for the oxidative dehydrogenation of ethane over phase-pure M1 MoVTeNbO x catalyst[J]. Journal of Catalysis, 2022, 416: 277-288. |
7 | CHU Bozhao, AN Hang, CHEN Xin, et al. Phase-pure M1 MoVTeNbO x catalysts with tunable particle size for oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2016, 524: 56-65. |
8 | YUN Yang Sik, LEE Minzae, SUNG Jongbaek, et al. Promoting effect of cerium on MoVTeNb mixed oxide catalyst for oxidative dehydrogenation of ethane to ethylene[J]. Applied Catalysis B: Environmental, 2018, 237: 554-562. |
9 | CHEN Yuxin, QIAN Shuairen, FENG Kai, et al. MoVTeNbO x M1@CeO2@Cordierite structured catalysts for ODHE process[J]. Chemical Engineering Science, 2022, 253: 117597-117605. |
10 | ISHCHENKO E V, GULYAEV R V, T Yu KARDASH, et al. Effect of Bi on catalytic performance and stability of MoVTeNbO catalysts in oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2017, 534: 58-69. |
11 | 葛欣, 孙清, 沈俭一. Cr/CeO2体系及其对乙烷脱氢反应催化性能的研究[J]. 无机化学学报, 2004, 20(8): 987-990. |
GE Xin, SUN Qing, SHEN Lianyi. Cr/CeO2 system and its catalytic performance for dehydrogenation of ethane[J]. Chinese Journal of Inorganic Chemistry, 2004, 20(8): 987-990. | |
12 | TALATI A, HAGHIGHI M, RAHMANI F. Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over Cr/TiO2-ZrO2 nanocatalyst: Effect of active phase and support composition on catalytic properties and performance[J]. Advanced Powder Technology, 2016, 27: 1195-1206. |
13 | ASGHARI E, HAGHIGHI M, RAHMANI F. CO2 oxidative dehydrogenation of ethane to ethylene over Cr/MCM-41 nanocatalyst synthesized via hydrothermal/impregnation methods: Influence of chromium content on catalytic properties and performance[J]. Journal of Molecular Catalysis A: Chemical, 2016, 418/419: 115-124. |
14 | DELGADO D, SOLSONA B, YKRELEF A, et al. Redox and catalytic properties of promoted NiO catalysts for the oxidative dehydrogenation of ethane[J]. The Journal of Physical Chemistry C, 2017, 121(45): 25132- 25142. |
15 | ZHANG Zhiqiang, ZHAO Guofeng, LIU Ye, et al. High-performance Ni-foam-structured Nb2O5-NiO nanocomposite catalyst for oxidative dehydrogenation of shale gas ethane to ethylene: Effects of Nb2O5 loading and calcination temperature[J]. Microporous and Mesoporous Materials, 2019, 288: 109609. |
16 | WANG Shaobin, MURATA K, HAYAKAWA T, et al. Performance of metal-oxide-promoted LiCl/sulfated-zirconia catalysts in the ethane oxidative dehydrogenation into ethene[J]. Catalysis Letters, 1999, 62(2): 191-195. |
17 | ZHANG Xinjie, LIU Jixin, JING Yi, et al. Support effects on the catalytic behavior of NiO/Al2O3 for oxidative dehydrogenation of ethane to ethylene[J]. Applied Catalysis A: General, 2003, 240(1/2):143-150. |
18 | COTILLO Mario Hurtado, UNSIHUAY Daisy, SANTOLALLA-VARGAS C E, et al. Catalysts based on Ni-Fe oxides supported on γ-Al2O3 for the oxidative dehydrogenation of ethane[J]. Catalysis Today, 2019, 356: 312-321. |
19 | BRUSSINO P, MEHRING E L, ULLA M A, et al. Tuning the properties of NiO supported on silicon-aluminum oxides: Influence of the silica amount in the ODH of ethane[J]. Catalysis Today, 2022, 394: 133-142. |
20 | 李东, 宋佳欣, 孔莲, 等. 助剂P对Ni-Al-O催化剂乙烷氧化脱氢性能的影响[J]. 无机化学学报, 2023, 39(4): 637-648. |
LI Dong, SONG Jiaxin, KONG Lian, et al. Effect of P promoter on the oxidative dehydrogenation of ethane over Ni-Al-O catalysts[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(4): 637-648. | |
21 | AL-GHAMDI S, VOLPE M, HOSSAIN M M, et al. VO x /c-Al2O3 catalyst for oxidative dehydrogenation of ethane to ethylene: Desorption kinetics and catalytic activity[J]. Applied Catalysis A: General, 2013, 450(2): 120-130. |
22 | CONCEPCIÓN P, BLASCO T, LNIETO J M L, et al. Preparation, characterization and reactivity of V-and/or Co-containing AlPO-18 materials (VCoAPO-18) in the oxidative dehydrogenation of ethane[J]. Microporous and Mesoporous Materials, 2004, 67(2/3): 215-227. |
23 | SHEN Zhenhao, LIU Jian, XU Hualong, et al. Dehydrogenation of ethane to ethylene over a highly efficient Ga2O3/HZSM-5 catalyst in the presence of CO2 [J]. Applied Catalysis A: General, 2009, 356(2): 148-153. |
24 | SARKAR B, GOYAL R, KONATHALA L S, et al. MoO3 nanoclusters decorated on TiO2 nanorods for oxidative dehydrogenation of ethane to ethylene[J]. Applied Catalysis B: Environmental, 2017, 217: 637-649. |
25 | 张琦, 童金辉, 丑凌军, 等. h-BN掺杂Na2WO4-Mn/SiO2催化剂用于乙烷氧化脱氢制乙烯[J]. 分子催化, 2020, 34(6): 495-504. |
ZHANG Qi, TONG Jinhui, CHOU Lingjun, et al. h-BN-Doped Na2WO4-Mn/SiO2 catalysts for oxidative dehydrogenation of ethane to ethylene[J]. Journal of Molecular Catalysis(china), 2020, 34(6): 495-504. | |
26 | MISHANIN Igor I, BOGDAN Victor I. Regularities of oxidative dehydrogenation of ethane over MoVTeNbO x catalyst under supercritical conditions[J]. Catalysis Letters, 2021, 151(7): 2088-2093. |
27 | CHENG MuJeng, GODDARD William A Ⅲ. The mechanism of alkane selective oxidation by the M1 phase of Mo-V-Nb-Te mixed metal oxides: Suggestions for improved catalysts[J]. Topics in Catalysis, 2016, 59(17): 1506-1517. |
28 | NGUYEN T T, AOUINE M, MILLET J M M. Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene[J]. Catalysis Communications, 2012, 21: 22-26. |
29 | VALENTE Jaime S, Héctor ARMENDÁRIZ-HERRERA, Roberto QUINTANA-SOLÓRZANO, et al. Chemical, structural, and morphological changes of a MoVTeNb catalyst during oxidative dehydrogenation of ethane[J]. ACS Catalysis, 2014, 4(5): 1292-1301. |
30 | Gamaliel CHE-GALICIA, Roberto QUINTANA-SOLÓRZANO, RUIZ-MARTÍNEZ Richard S, et al. Kinetic modeling of the oxidative dehydrogenation of ethane to ethylene over a MoVTeNbO catalytic system[J]. Chemical Engineering Journal, 2014, 252: 75-88. |
31 | DE ARRIBA Agustín, SOLSONA Benjamin, DEJOZ Ana M, et al. Evolution of the optimal catalytic systems for the oxidative dehydrogenation of ethane: The role of adsorption in the catalytic performance[J]. Journal of Catalysis, 2022, 408: 388-400. |
32 | QUINTANA-SOLÓRZANO R, BARRAGÁN-RODRÍGUEZ G, ARMENDÁRIZ-HERRERA H, et al. Understanding the kinetic behavior of a Mo-V-Te-Nb mixed oxide in the oxydehydrogenation of ethane[J]. Fuel, 2014, 138: 15-26. |
33 | BONDAREVA V M, LAZAREVA E V, T Yu KARDASH, et al. Oxidative transformations of ethane and ethylene on VMoTeNbO catalysts[J]. Russian Journal of Applied Chemistry, 2019, 92(1): 122-127. |
34 | HE Qian, Jungwon WOO, BELIANINOV Alexei, et al. Better catalysts through microscopy: Mesoscale M1/M2 intergrowth in molybdenum-vanadium based complex oxide catalysts for propane ammoxidation[J]. ACS Nano, 2015, 9(4): 3470-3478. |
35 | BEATO P, BLUME A, GIRGSDIES F, et al. Analysis of structural transformations during the synthesis of a MoVTeNb mixed oxide catalyst[J]. Applied Catalysis A: General, 2006, 307(1): 137-147. |
36 | BACA Manuel, MILLET Jean-Marc M. Bulk oxidation state of the different cationic elements in the MoVTe(Sb)NbO catalysts for oxidation or ammoxidation of propane[J]. Applied Catalysis A: General, 2005, 279(1/2): 67-77. |
37 | Michael HÄVECKER, WRABETZ Sabine, Jutta KRÖHNERT, et al. Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid[J]. Journal of Catalysis, 2012, 285(1): 48-60. |
38 | BONDAREVA V M, T Yu KARDASH, ISHCHENKO E V, et al. Heterogeneous catalytic oxidative conversion of ethane to ethylene[J]. Catalysis in Industry, 2015, 7(2): 104-110. |
39 | BOTELLA P, GARCĺA-GONZÁLEZ E, DEJOZ A, et al. Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts[J]. Journal of Catalysis, 2004, 225(2): 428-438. |
40 | LÓPEZ NIETO José M. The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts[J]. Topics in Catalysis, 2006, 41(1): 3-15. |
41 | MELZER Daniel, XU Pinghong, HARTMANN Daniela, et al. Atomic-scale determination of active facets on the MoVTeNb oxide M1 phase and their intrinsic catalytic activity for ethane oxidative dehydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(31): 8873-8877. |
42 | AMAKAWA Kazuhiko, KOLEN’KO Yury V, VILLA Alberto, et al. Multifunctionality of crystalline MoV(TeNb) M1 oxide catalysts in selective oxidation of propane and benzyl alcohol[J]. ACS Catalysis, 2013, 3(6): 1103-1113. |
43 | DENIAU Benoit, NGUYEN Thi Thao, DELICHERE Pierre, et al. Redox state dynamics at the surface of MoVTe(Sb)NbO M1 phase in selective oxidation of light alkanes[J]. Topics in Catalysis, 2013, 56(18): 1952-1962. |
44 | CHENG MuJeng, GODDARD William A Ⅲ. In silico design of highly selective Mo-V-Te-Nb-O mixed metal oxide catalysts for ammoxidation and oxidative dehydrogenation of propane and ethane[J]. Journal of the American Chemical Society, 2015, 137(41): 13224-13227. |
45 | GODDARD William A, MUELLER Jonathan E, CHENOWETH Kimberly, et al. ReaxFF Monte Carlo reactive dynamics: Application to resolving the partial occupations of the M1 phase of the MoVTeNbO catalyst[J]. Catalysis Today, 2010, 157(1/2/3/4): 71-76. |
46 | ZHU Yuanyuan, SUSHKO Peter V, MELZER Daniel, et al. Formation of oxygen radical sites on MoVTeNbO x by cooperative electron redistribution[J]. Journal of the American Chemical Society, 2017, 139(36): 12342-12345. |
47 | QIAN Shuairen, CHEN Yuxin, WANG Yujie, et al. Identification of the intrinsic active site in phase-pure M1 catalysts for oxidation dehydrogenation of ethane by density functional theory calculations[J]. The Journal of Physical Chemistry C, 2022, 126(41): 17536-17543. |
48 | T Yu KARDASH, LAZAREVA E V, SVINTSITSKIY D A, et al. The evolution of the M1 local structure during preparation of VMoNbTeO catalysts for ethane oxidative dehydrogenation to ethylene[J]. RSC Advances, 2018, 8(63): 35903-35916. |
49 | ANNAMALAI Leelavathi, LIU Yilang, EZENWA Sopuruchukwu, et al. Influence of tight confinement on selective oxidative dehydrogenation of ethane on MoVTeNb mixed oxides[J]. ACS Catalysis, 2018, 8(8): 7051-7067. |
50 | KARDASH T Y, MARCHUK A S, ISHCHENKO A V, et al. In situ study of structural transformations of the active phase of VMoNbTeO catalysts under reduction conditions[J]. Journal of Structural Chemistry, 2019, 60(10): 1599-1611. |
51 | NGUYEN Thi Thao, DENIAU Benoit, BACA Manuel, et al. Influence of Nb content on the structure, cationic and valence distribution and catalytic properties of MoVTe(Sb)NbO M1 phase used as catalysts for the oxidation of light alkanes[J]. Topics in Catalysis, 2016, 59(17): 1496-1505. |
52 | GRASSELLI Robert K. Selectivity issues in (amm)oxidation catalysis[J]. Catalysis Today, 2005, 99(1/2): 23-31. |
53 | GRASSELLI R K, BURRINGTONC J D, BUTTREY D J, et al. Multifunctionality of active centers in (amm)oxidation catalysts: from Bi-Mo-O x to Mo-V-Nb-(Te; Sb)-O x [J]. Topics in Catalysis, 2003, 23(1-4): 5-22. |
54 | BOTELLA P, DEJOZ A, ABELLO M C, et al. Selective oxidation of ethane: developing an orthorhombic phase in Mo-V-X (X=Nb, Sb, Te) mixed oxides[J]. Catalysis Today, 2009, 142(3/4): 272-277. |
55 | ZHU Haibo, LAVEILLE Paco, ROSENFELD Devon C, et al. A high-throughput reactor system for optimization of Mo-V-Nb mixed oxide catalyst composition in ethane ODH[J]. Catalysis Science & Technology, 2015, 5(8): 4164-4173. |
56 | XIE Qi, CHEN Luqian, WENG Weizheng, et al. Preparation of MoVTe(Sb)Nb mixed oxide catalysts using a slurry method for selective oxidative dehydrogenation of ethane[J]. Journal of Molecular Catalysis A: Chemical, 2005, 240(1/2): 191-196. |
57 | HAN Zhisan, YI Xiaodong, XIE Qi, et al. Oxidative dehydrogenation of ethane over MoVTeNbO catalyst prepared by a slurry method[J]. Chinese Journal of Catalysis, 2005, 26(6): 441-442. |
58 | MASSÓ RAMÍREZ Amada, Francisco IVARS-BARCELÓ, LÓPEZ NIETO José M. Optimizing reflux synthesis method of Mo-V-Te-Nb mixed oxide catalysts for light alkane selective oxidation[J]. Catalysis Today, 2020, 356: 322-329. |
59 | CHU Bozhao, TRUTER Lara, NIJHUIS Tjeerd Alexander, et al. Oxidative dehydrogenation of ethane to ethylene over phase-pure M1 MoVTeNbO x catalysts in a micro-channel reactor[J]. Catalysis Science & Technology, 2015, 5(5): 2807-2813. |
60 | DANG Dan, CHEN Xin, YAN Binhang, et al. Catalytic performance of phase-pure M1 MoVTeNbO x /CeO2 composite for oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2018, 365: 238-248. |
61 | MELZER Daniel, MESTL Gerhard, WANNINGER Klaus, et al. Design and synthesis of highly active MoVTeNb-oxides for ethane oxidative dehydrogenation[J]. Nature Communications, 2019, 10(1): 4012-4020. |
62 | ISHCHENKO E V, ANDRUSHKEVICH T V, POPOVA G Y, et al. Effect of preparation conditions on the phase composition of the MoVTe(Nb) oxide catalyst for the oxidative conversions of propane[J]. Catalysis in Industry, 2010, 2(4): 291-298. |
63 | FINASHINA E D, KUCHEROV A V, KUSTOV L M. Effect of the conditions of preparing mixed oxide catalyst of Mo-V-Te-Nb-O composition on its activity in the oxidative dehydrogenation of ethane[J]. Russian Journal of Physical Chemistry A, 2013, 87(12): 1983-1988. |
64 | NARASCHEWSKI F N, JENTYS A, LERCHER J A. On the role of the vanadium distribution in MoVTeNbO[J]. Topics in Catalysis, 2011, 54(10): 639-649. |
65 | VALENTE Jaime S, Etel MAYA-FLORES, Héctor ARMENDÁRIZ-HERRERA, et al. Metal solution precursors: their role during the synthesis of MoVTeNb mixed oxide catalysts[J]. Catalysis Science & Technology, 2018, 8(12): 3123-3132. |
66 | MAKSIMOVSKAYA Raisa I, BONDAREVA Valentina M, ALESHINA Galina I. NMR spectroscopic studies of interactions in solution during the synthesis of MoVTeNb oxide catalysts[J]. European Journal of Inorganic Chemistry, 2009, 40(4): 4906-4914. |
67 | IVARS F, SOLSONA B, BOTELLA P, et al. Selective oxidation of propane over alkali-doped Mo-V-Sb-O catalysts[J]. Catalysis Today, 2009, 141(3/4): 294-299. |
68 | OLIVER J M, LÓPEZ NIETO J M, BOTELLA P, et al. The effect of pH on structural and catalytic properties of MoVTeNbO catalysts[J]. Applied Catalysis A: General, 2004, 257(1): 67-76. |
69 | LIN Manhua Mandy. Complex metal oxide catalysts for selective oxidation of propane and derivatives Ⅱ. The relationship among catalyst preparation, structure and catalytic properties[J]. Applied Catalysis A: General, 2003, 250(2): 287-303. |
70 | LIN Manhua Mandy. Complex metal-oxide catalysts for selective oxidation of propane and derivatives I. Catalysts preparation and application in propane selective oxidation to acrylic acid[J]. Applied Catalysis A: General, 2003, 250(2): 305-318. |
71 | Ya POPOVA G, ANDRUSHKEVICH T V, DOVLITOVA L S, et al. The investigation of chemical and phase composition of solid precursor of MoVTeNb oxide catalyst and its transformation during the thermal treatment[J]. Applied Catalysis A: General, 2009, 353(2): 249-257. |
72 | DE ARRIBA Agustín, SOLSONA Benjamin, Ester GARCÍA-GONZÁLEZ, et al. Te-doped MoV-Oxide (M1 phase) for ethane ODH. The role of tellurium on morphology, thermal stability and catalytic behaviour[J]. Applied Catalysis A: General, 2022, 643: 118780-118792. |
73 | CHU Bozhao, TRUTER Lara, NIJHUIS T A, et al. Performance of phase-pure M1 MoVTeNbO x catalysts by hydrothermal synthesis with different post-treatments for the oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2015, 498: 99-106. |
74 | CHEN Xin, YANG Qianli, CHU Bozhao, et al. Valence variation of phase-pure M1 MoVTeNb oxide by plasma treatment for improved catalytic performance in oxidative dehydrogenation of ethane[J]. RSC Advances, 2015, 5(111): 91295-91301. |
75 | YU Junjun, XU Ye, GULIANTS Vadim V. Propane ammoxidation over Mo-V-Te-Nb-O M1 phase investigated by DFT: Elementary steps of ammonia adsorption, activation and NH insertion into π-allyl intermediate[J]. Topics in Catalysis, 2014, 57(14): 1145-1151. |
76 | KONYA Takeshi, KATOU Tomokazu, MURAYAMA Toru, et al. An orthorhombic Mo3VO x catalyst most active for oxidative dehydrogenation of ethane among related complex metal oxides[J]. Catalysis Science & Technology, 2013, 3(2): 380-387. |
77 | ISHCHENKO E V, ISHCHENKO A V, BONDAREVA V M, et al. Structural features of promoted MoVTeNbO catalysts for the oxidative dehydrogenation of ethane[J]. Kinetics and Catalysis, 2015, 56(6): 788-795. |
78 | NGUYEN T T, BUREL L, NGUYEN D L, et al. Catalytic performance of MoVTeNbO catalyst supported on SiC foam in oxidative dehydrogenation of ethane and ammoxidation of propane[J]. Applied Catalysis A: General, 2012, 433/434: 41-48. |
79 | MISHANIN I I, KALENCHUK A N, MASLAKOV K I, et al. Deactivation of a mixed oxide catalyst of Mo-V-Te-Nb-O composition in the reaction of oxidative ethane dehydrogenation[J]. Russian Journal of Physical Chemistry A, 2016, 90(6): 1132-1136. |
80 | ISHCHENKO E V, T Yu KARDASH, GULYAEV R V, et al. Effect of K and Bi doping on the M1 phase in MoVTeNbO catalysts for ethane oxidative conversion to ethylene[J]. Applied Catalysis A: General, 2016, 514: 1-13. |
81 | MISHANIN Igor I, BOGDAN Viktor I. Advantages of ethane oxidative dehydrogenation on the MoVTeNbO x catalyst under elevated pressure[J]. Mendeleev Communications, 2019, 29(4): 455-457. |
82 | NGUYEN Thi Thao, DENIAU Benoit, DELICHERE Pierre, et al. Influence of the content and distribution of vanadium in the M1 phase of the MoVTe(Sb)NbO catalysts on their catalytic properties in light alkanes oxidation[J]. Topics in Catalysis, 2014, 57(14): 1152-1162. |
83 | JIMENEZ Juan, MINGLE Kathleen, BUREERUG Teeraya, et al. Statistically guided synthesis of MoV-based mixed-oxide catalysts for ethane partial oxidation[J]. Catalysts, 2018, 8(9): 370-385. |
84 | AOUINE Mimoun, EPICIER Thierry, MILLET Jean-Marc M. In situ environmental STEM study of the MoVTe oxide M1 phase catalysts for ethane oxidative dehydrogenation[J]. ACS Catalysis, 2016, 6(7): 4775-4781. |
85 | MELZER Daniel, MESTL Gerhard, WANNINGER Klaus, et al. On the promoting effects of Te and Nb in the activity and selectivity of M1 MoV-oxides for ethane oxidative dehydrogenation[J].Topics in Catalysis, 2020, 63(19/20): 1754-1764. |
86 | HONG Bangde, LEE ChienLiang. Specific activities of rhombic dodecahedral, octahedral, and cubic Cu2O nanocrystals as glucose oxidation catalysts[J]. Chemical Engineering Journal, 2020, 382: 122994-12300. |
87 | ZHU Chengzhang, WEI Xiaoqian, LI Wanqin, et al. Crystal-plane effects of CeO2{110}and CeO2{100}on photocatalytic CO2 reduction: synergistic interactions of oxygen defects and hydroxyl groups[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14397-14406. |
88 | HUA Qing, CAO Tian, GU Xiangkui, et al. Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen[J]. Angewandte Chemie International Edition, 2014, 53(19): 4856-4861. |
89 | YANG Chengwu, YU Xiaojuan, Stefan HEIßLER, et al. Surface faceting and reconstruction of ceria nanoparticles[J]. Angewandte Chemie International Edition, 2017, 56(1): 375-379. |
90 | Gianvito VILÉ, COLUSSI Sara, KRUMEICH Frank, et al. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis[J]. Angewandte Chemie International Edition, 2014, 53(45): 12069-12072. |
91 | WU Zili, MANN Amanda, LI Meijun, et al. Spectroscopic investigation of surface-dependent acid-base property of ceria nanoshapes[J]. The Journal of Physical Chemistry C, 2015, 119(13): 7340-7350. |
92 | CHEN Shilong, CAO Tian, GAO Yuxian, et al. Probing surface structures of CeO2, TiO2, and Cu2O nanocrystals with CO and CO2 chemisorption[J]. The Journal of Physical Chemistry C, 2016, 120(38): 21472-21485. |
93 | TAN Zicong, LI Guangchao, CHOU HungLung, et al. Differentiating surface Ce species among CeO2 facets by solid-state NMR for catalytic correlation[J]. ACS Catalysis, 2020, 10(7): 4003-4011. |
94 | IVARS F, BOTELLA P, DEJOZ A, et al. Selective oxidation of short-chain alkanes over hydrothermally prepared MoVTeNbO catalysts[J]. Topics in Catalysis, 2006, 38(1): 59-67. |
95 | T Yu KARDASH, LAZAREVA E V, SVINTSITSKIY D A, et al. VMoNbTeO catalysts for ethane oxidative dehydrogenation: The modification by P, Sb and Bi to influence on the catalytic stability[J]. AIP Conference Proceedings, 2019, 2143(1): 020029. |
96 | SVINTSITSKIY Dmitry A, KARDASH Tatyana Yu, LAZAREVA Evgeniya V, et al. NAP-XPS and in situ XRD study of the stability of Bi-modified MoVTeNbO catalysts for oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2019, 579: 141-150. |
97 | LAZAREVA E V, BONDAREVA V M, SVINTSITSKIY D A, et al. Oxidative dehydrogenation of ethane over M1 MoVTeNbO catalysts modified by the addition of Nd, Mn, Ga or Ge[J]. Catalysis Today, 2021, 361: 50-56. |
98 | CHEN Xin, DANG Dan, AN Hang, et al. MnO x promoted phase-pure M1 MoVTeNb oxide for ethane oxidative dehydrogenation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 103-111. |
99 | T Yu KARDASH, LAZAREVA E V, SVINTSITSKIY D A, et al. Effect of selenium additives on the physicochemical and catalytic properties of VMoTeNbO catalysts in the oxidative dehydrogenation of ethane[J]. Kinetics and Catalysis, 2019, 60(3): 377-387. |
100 | SCHMICKLER Wolfgang, NAZMUTDINOV Renat R, WANG Qiuhong, et al. Electrochemistry of Ce(Ⅳ)/Ce(Ⅲ) redox couples in mixed solutions for aqueous flow battery: Experimental and molecular modelling study[J]. Electrochimica Acta, 2021, 368: 137601-137608. |
101 | TSURUGI Hayato, MASHIMA Kazushi. Renaissance of homogeneous cerium catalysts with unique Ce(Ⅳ/Ⅲ) couple: Redox-mediated organic transformations involving homolysis of Ce(Ⅳ)-ligand covalent bonds[J]. Journal of the American Chemical Society, 2021, 143(21): 7879-7890. |
102 | CHEN Yuxin, DANG Dan, YAN Binhang, et al. Mixed metal oxides of M1 MoVTeNbO x and TiO2 as composite catalyst for oxidative dehydrogenation of ethane[J]. Catalysts, 2022, 12: 71-86. |
103 | CHEN Yuxin, DANG Dan, YAN Binhang, et al. Nanocomposite catalysts of non-purifified MoVTeNbO x with CeO2 or TiO2 for oxidative dehydrogenation of ethane[J]. Chemical Engineering Science, 2022, 264: 118154-118161. |
104 | BONDAREVA V M, ISHCHENKO E V, T Yu KARDASH, et al. Effect of SiO2 on the physicochemical and catalytic properties of VMoTeNbО catalyst in oxidative conversion of ethane[J]. Russian Journal of Applied Chemistry, 2016, 89(8): 1279-1285. |
105 | BONDAREVA V M, LAZAREVA E V, T Yu KARDASH, et al. Oxidative dehydrogenation of ethane on VMoTeNbО/SiO2 catalysts and the effect of the initial support compound on their physicochemical and catalytic properties[J]. Catalysis in Industry, 2020, 12(3): 226-234. |
106 | BONDAREVA V M, ISHCHENKO E V, T Yu KARDASH, et al. Oxidative dehydrogenation of ethane on VMoTeNbО/Al-Si-O catalysts: Effect of the support on the physicochemical and catalytic properties[J]. Russian Journal of Applied Chemistry, 2017, 90(7): 1136-1142. |
[1] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[2] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[3] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[4] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[5] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[6] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[7] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[8] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[9] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[10] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[11] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[12] | LAI Huaidong, CHENG Deshu, WANG Jian, LUO Juxiang. Preparation and application of α-methyl styrene maleic anhydride copolymer microspheres immobilized β-cyclodextrin [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2038-2046. |
[13] | HE Yangdong, CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280. |
[14] | XI Huimin, QIAN Kun, YU Kejing, LI Jie, ZHANG Zhongwei, XIONG Ziming, ZHANG Yaoliang. Preparation, modification and application of self-healing polyurethane elastomers based on disulfide and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 934-943. |
[15] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |