1 |
彭胜男, 张海南, 罗旭东, 等. CO2催化还原研究进展[J]. 辽宁科技大学学报, 2019, 42(3): 186-191.
|
|
PENG Shengnan, ZHANG Hainan, LUO Xudong, et al. CO2 Progress in catalytic reduction research[J]. Journal of Liaoning University of Science and Technology, 2019, 42(3): 186-191.
|
2 |
GAO Dunfeng, ZHOU Hu, WANG Jing, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291.
|
3 |
HUANG Hongwen, JIA Huanhuan, LIU Zhao, et al. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform[J]. Angewandte Chemie, 2017, 129(13): 3648-3652.
|
4 |
CHEN Y P, WEI J T, DUYAR M S, et al. Carbon-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Society Reviews, 2021, 50(4): 2337-2366.
|
5 |
GAO Dunfeng, ZHANG Yi, ZHOU Zhiwen, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655.
|
6 |
HAN P, LI L S, WANG Z X, et al. Multi-omics analysis provides insight into the possible molecular mechanism of hay fever based on gut microbiota[J]. Engineering, 2022, 15: 115-125.
|
7 |
YUN H, KIM J, CHOI W, et al. Understanding morphological degradation of Ag nanoparticle during electrochemical CO2 reduction reaction by identical location observation[J]. Electrochimica Acta, 2021, 371: 137795.
|
8 |
THEVENON A, ROSAS-HERNÁNDEZ A, FONTANI HERREROS A M, et al. Dramatic HER suppression on Ag electrodes via molecular films for highly selective CO2 to CO reduction[J]. ACS Catalysis, 2021, 11(8): 4530-4537.
|
9 |
ZHAO Meiming, GU Yaliu, CHEN Ping, et al. Highly selective electrochemical CO2 reduction to CO using a redox-active couple on low-crystallinity mesoporous ZnGa2O4 catalyst[J]. Journal of Materials Chemistry A, 2019, 7(15): 9316-9323.
|
10 |
LUO Wen, ZHANG Jie, LI Mo, et al. Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts[J]. ACS Catalysis, 2019, 9(5): 3783-3791.
|
11 |
LEE S, PARK G, LEE J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol[J]. ACS Catalysis, 2017, 7(12): 8594-8604.
|
12 |
WANG Pengtang, QIAO Man, SHAO Qi, et al. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction[J]. Nature Communications, 2018, 9(1): 1-10.
|
13 |
ZHANG Y J, SETHURAMAN V, MICHALSKY R, et al. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts[J]. ACS Catalysis, 2014, 4(10): 3742-3748.
|
14 |
CAVE E R, SHI C, KUHL K P, et al. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals[J]. ACS Catalysis, 2018, 8(4): 3035-3040.
|
15 |
WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4): 910-918.
|
16 |
WAKERLEY D, LAMAISON S, OZANAM F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface[J]. Nature Materials, 2019, 18(11): 1222-1227.
|
17 |
INABA T, TAKENAKA Y, KAWABATA Y, et al. Effect of the crystallization process of surfactant bilayaer lamellar structures on the elongation of high-aspect-ratio gold nanorods[J]. The Journal of Physical Chimestry B, 2019, 123(22): 4776-4783.
|
18 |
全凤娇. 高效电催化还原二氧化碳的材料设计及其性能增强[D]. 武汉: 华中师范大学, 2019.
|
|
QUAN Fengjiao. Material design of highly efficient electrocatalytic reduction of carbon dioxide and its performance enhancement [D]. Wuhan: Central China Normal University, 2019.
|
19 |
ZHANG Z Q, BANERJEE S, THOI V S, et al. Reorganization of interfacial water by an amphiphilic cationic surfactant promotes CO2 reduction[J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5457-5463.
|
20 |
钟洋. 铜基电极表界面调控及其电催化二氧化碳还原性能研究[D]. 北京: 北京化工大学, 2020.
|
|
ZHONG Yang. Regulation of copper based electrode interface and properties of electrocatalytic carbon dioxide reduction[D]. Beijing: Beijing University of Chemical Technology, 2020.
|
21 |
LONG Xia, XIAO Shuang, WANG Zilong, et al. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—An advanced electrocatalyst for oxygen evolution reaction[J]. Chemical Communications, 2015, 51(6): 1120-1123.
|
22 |
LIANG H F, MENG F, CABÁN-ACEVEDO M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis[J]. Nano Letters, 2015, 15(2): 1421-1427.
|
23 |
BAO Jian, WANG Zhaolong, XIE Junfeng, et al. The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2964-2970.
|
24 |
赵卓雅, 李祥高, 王世荣, 等. 六角片状氢氧化镁(001)晶面优先生长条件的研究[J]. 人工晶体报, 2014, 43(7): 1611-1619.
|
|
ZHAO Zhuoya, LI Xianggao, WANG Shirong, et al. Study on the preferential growth conditions of magnesium hydroxide (001) [J]. The Intraocular Lens Newspaper, 2014, 43(7): 1611-1619.
|
25 |
刘璐. 针铁矿中Cd/Zn同晶替代及对其结构和性质的影响[D]. 武汉: 华中农业大学, 2020.
|
|
LIU Lu. Cd/Zn homostal substitution in goethite and its effects on its structure and properties[D]. Wuhan: Huazhong Agricultural University, 2020.
|
26 |
LI G J, KAWI S. Synthesis, characterization and sensing application of novel semiconductor oxides[J]. Talanta, 1998, 45(4): 759-766.
|
27 |
SAID M, UTAMI H P, HAYATI F. Insertion of bentonite with organometallic as adsorbent of Congo red[J]. IOP Conference Series: Materials Science and Engineering, 2018, 299(1): 012086.
|
28 |
汤睿, 张寒冰, 施华珍, 等. CTAB改性磁性膨润土对刚果红和酸性大红的吸附[J]. 高校化学工程学报, 2019, 33(3): 748-757.
|
|
TANG Rui, ZhANG Hanbing, SHI Huazhen, et al. Adsorption of Congo red and acidic bright red by CTAB modified magnetic bentonite[J]. Journal of Chemical Engineering of the University, 2019, 33(3): 748-757.
|
29 |
QUAN Fengjiao, XIONG Mubing, JIA Falong, et al. Efficient electroreduction of CO2 on bulk silver electrode in aqueous solution via the inhibition of hydrogen evolution[J]. Applied Surface Science, 2017, 399: 48-54.
|
30 |
DUNWELL M, YAN Y S, Xu B J. Understanding the influence of the electrochemical double-layer on heterogeneous electrochemical reactions[J]. Current Opinion in Chemical Engineering, 2018, 20: 151-158.
|
31 |
RINGE S, CLARK E L, RESASCO J, et al. Understanding cation effects in electrochemical CO2 reduction[J]. Energy & Environmental Science, 2019, 12(10): 3001-3014.
|
32 |
GUTIÉRREZ-SÁNCHEZ O, DAEMS N, OFFERMANS W, et al. The inhibition of the proton donor ability of bicarbonate promotes the electrochemical conversion of CO2 in bicarbonate solutions[J]. Journal of CO2 Utilization, 2021, 48: 101521.
|