Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6443-6453.DOI: 10.16085/j.issn.1000-6613.2022-0300
• Materials science and technology • Previous Articles Next Articles
CHEN Guodong1(), LIU Haicheng1,2(), MENG Wushuang1, YOU Yu1, ZHANG Hao1, CAO Mengru1
Received:
2022-02-28
Revised:
2022-04-25
Online:
2022-12-29
Published:
2022-12-20
Contact:
LIU Haicheng
陈国栋1(), 刘海成1,2(), 孟无霜1, 尤雨1, 张皓1, 曹梦茹1
通讯作者:
刘海成
作者简介:
陈国栋(1994—),男,硕士研究生,研究方向为微塑料环境污染与防治。E-mail:1372840158@qq.com。
基金资助:
CLC Number:
CHEN Guodong, LIU Haicheng, MENG Wushuang, YOU Yu, ZHANG Hao, CAO Mengru. Research progress on artificial intervention and characterization of physicochemical properties of microplastics aging[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6443-6453.
陈国栋, 刘海成, 孟无霜, 尤雨, 张皓, 曹梦茹. 微塑料老化的人工干预及理化特性表征研究进展[J]. 化工进展, 2022, 41(12): 6443-6453.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0300
类别 | 方法 | 参数 | 文献 | ||||
---|---|---|---|---|---|---|---|
微塑料 | 粒径 | 时间 | 介质 | 其他 | |||
光辐射 | UV-A 340nm | PS | 0.1µm | 90d | 空气、纯水和模拟海水 | 25℃ | [ |
UV-B 313nm | PVC | 50~100µm | 25d | 空气 | 50W/m2 | [ | |
UV-C 254nm | PVC | D50=139µm | 60d | 模拟海水 | 功率20W | [ | |
氙灯 | PE | 75~150µm | 10d | 空气 | 85℃、734W/m2 | [ | |
汞灯365nm | PP | 100~150µm | 20d | 超纯水、河口水或海水 | 25℃、100W/m2 | [ | |
金属卤化物灯 | PA6.6 | 4mm和100µm | 77d | 海水、空气 | <30℃、照度12200lx | [ | |
高级氧化 | 热活化K2S2O8 | PP | <180µm | 40d | 100mL纯水中加入2.5g K2S2O8 | 70℃ | [ |
Fenton | PS | — | 7d | Fenton试剂、1.5%H2O2溶液 | 25℃±2℃、pH=4.0、振荡 | [ | |
光Fenton | PS | 50.4µm±11.9µm | 5d | Fenton试剂 | 30℃、pH=3.0、10W/m2 | [ | |
光催化 | PP | 3~5mm,厚约1mm | 4h | 纳米TiO2包覆 | 60℃、湿度70%、1200W/m2 | [ | |
O3 | 色母粒 | <500µm | 6h | 浓度0.21mg/min、流速30mL/min | 25℃ | [ | |
放电等离子体 | PVC | 40~320µm | 1h | 干燥空气 | 空气流速1.0L/min、电压18kV、频率50Hz | [ | |
高温热解 | PS | 平均1µm | 90d | 空气、纯水和模拟海水 | 75℃、pH=7.0 | [ | |
PP颗粒 | 直径约2mm,长度4~5mm | 20min | 空气、N2;气流200mL/min、气压0.1MPa | 管式炉150℃、250℃、450℃和700℃ | [ | ||
微生物降解 | 真菌 | HDPE | <200µm | 28d | 液体培养基 | 从蜡螟幼虫的肠道内容物分离,培养筛选微生物 | [ |
高能辐射 | γ射线 | HDPE | 90~106µm | — | — | 1.17MeV,60Co源 | [ |
机械磨损 | PP | <5mm | 5d | 砂、纯水混合物 | 25℃、黑暗条件、摇床250r/min | [ | |
环境因素 | PA、PET、PS、PVC | 150~550µm | 90d | 海水、沙子、土壤和空气 | 25℃、UV-A 340nm、功率20W | [ |
类别 | 方法 | 参数 | 文献 | ||||
---|---|---|---|---|---|---|---|
微塑料 | 粒径 | 时间 | 介质 | 其他 | |||
光辐射 | UV-A 340nm | PS | 0.1µm | 90d | 空气、纯水和模拟海水 | 25℃ | [ |
UV-B 313nm | PVC | 50~100µm | 25d | 空气 | 50W/m2 | [ | |
UV-C 254nm | PVC | D50=139µm | 60d | 模拟海水 | 功率20W | [ | |
氙灯 | PE | 75~150µm | 10d | 空气 | 85℃、734W/m2 | [ | |
汞灯365nm | PP | 100~150µm | 20d | 超纯水、河口水或海水 | 25℃、100W/m2 | [ | |
金属卤化物灯 | PA6.6 | 4mm和100µm | 77d | 海水、空气 | <30℃、照度12200lx | [ | |
高级氧化 | 热活化K2S2O8 | PP | <180µm | 40d | 100mL纯水中加入2.5g K2S2O8 | 70℃ | [ |
Fenton | PS | — | 7d | Fenton试剂、1.5%H2O2溶液 | 25℃±2℃、pH=4.0、振荡 | [ | |
光Fenton | PS | 50.4µm±11.9µm | 5d | Fenton试剂 | 30℃、pH=3.0、10W/m2 | [ | |
光催化 | PP | 3~5mm,厚约1mm | 4h | 纳米TiO2包覆 | 60℃、湿度70%、1200W/m2 | [ | |
O3 | 色母粒 | <500µm | 6h | 浓度0.21mg/min、流速30mL/min | 25℃ | [ | |
放电等离子体 | PVC | 40~320µm | 1h | 干燥空气 | 空气流速1.0L/min、电压18kV、频率50Hz | [ | |
高温热解 | PS | 平均1µm | 90d | 空气、纯水和模拟海水 | 75℃、pH=7.0 | [ | |
PP颗粒 | 直径约2mm,长度4~5mm | 20min | 空气、N2;气流200mL/min、气压0.1MPa | 管式炉150℃、250℃、450℃和700℃ | [ | ||
微生物降解 | 真菌 | HDPE | <200µm | 28d | 液体培养基 | 从蜡螟幼虫的肠道内容物分离,培养筛选微生物 | [ |
高能辐射 | γ射线 | HDPE | 90~106µm | — | — | 1.17MeV,60Co源 | [ |
机械磨损 | PP | <5mm | 5d | 砂、纯水混合物 | 25℃、黑暗条件、摇床250r/min | [ | |
环境因素 | PA、PET、PS、PVC | 150~550µm | 90d | 海水、沙子、土壤和空气 | 25℃、UV-A 340nm、功率20W | [ |
类别 | 老化方法 | 控制参数 | 特点 | 适用性 |
---|---|---|---|---|
光辐射 | 紫外灯、氙灯、汞灯等 | 辐照时间和强度、环境介质 | 老化周期较短,无须分离 | 较强 |
高级氧化 | 热活化K2S2O8、光Fenton、O3等 | 氧化剂种类和剂量 | 老化周期短,但氧化剂消耗量大,分离复杂 | 良好 |
高温热解 | 升温 | 温度、湿度 | 操作简单 | 良好 |
微生物降解 | 细菌、真菌等 | 菌属、培养条件 | 微生物需要分离和富集培养,老化周期较长 | 一般 |
高能辐射 | γ射线 | 辐照剂量和时间 | 反应迅速,老化周期短 | 一般 |
机械磨损 | 沙子、恒温振荡器 | 沙子粒径、振荡速度 | 引起物理老化,分离较简单 | 良好 |
类别 | 老化方法 | 控制参数 | 特点 | 适用性 |
---|---|---|---|---|
光辐射 | 紫外灯、氙灯、汞灯等 | 辐照时间和强度、环境介质 | 老化周期较短,无须分离 | 较强 |
高级氧化 | 热活化K2S2O8、光Fenton、O3等 | 氧化剂种类和剂量 | 老化周期短,但氧化剂消耗量大,分离复杂 | 良好 |
高温热解 | 升温 | 温度、湿度 | 操作简单 | 良好 |
微生物降解 | 细菌、真菌等 | 菌属、培养条件 | 微生物需要分离和富集培养,老化周期较长 | 一般 |
高能辐射 | γ射线 | 辐照剂量和时间 | 反应迅速,老化周期短 | 一般 |
机械磨损 | 沙子、恒温振荡器 | 沙子粒径、振荡速度 | 引起物理老化,分离较简单 | 良好 |
微塑料类型 | 计算方法 | 参考文献 |
---|---|---|
PE | [ | |
[ | ||
[ | ||
[ | ||
PP | [ | |
[ | ||
PS | [ | |
[ |
微塑料类型 | 计算方法 | 参考文献 |
---|---|---|
PE | [ | |
[ | ||
[ | ||
[ | ||
PP | [ | |
[ | ||
PS | [ | |
[ |
1 | ARTHUR C, BAKER J, BAMFORD H, et al. Summary of the international research workshop on the occurrence, effects, and fate of microplastic marine debris[C]//ARTHUR C, BAKER J, BAMFORD H. Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris. Washington: National Oceanic and Atmospheric Administration Technical Memorandum NOS-OR&R-30, 2009. |
2 | 马思睿, 李舒行, 郭学涛. 微塑料的老化特性、机制及其对污染物吸附影响的研究进展[J]. 中国环境科学, 2020, 40(9): 3992-4003. |
MA Sirui, LI Shuxing, GUO Xuetao. A review on aging characteristics, mechanism of microplastics and their effects on the adsorption behaviors of pollutants[J]. China Environmental Science, 2020, 40(9): 3992-4003. | |
3 | LUO Hongwei, LIU Chenyang, HE Dongqin, et al. Environmental behaviors of microplastics in aquatic systems: a systematic review on degradation, adsorption, toxicity and biofilm under aging conditions[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126915. |
4 | WANG Zezheng, FU Dongdong, GAO Liu, et al. Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112199. |
5 | ZHANG Xingli, XIA Mengli, SU Xiaojuan, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis[J]. Journal of Hazardous Materials, 2021, 413: 125321. |
6 | BOTTERELL Zara L R, BEAUMONT Nicola, COLE Matthew, et al. Bioavailability of microplastics to marine zooplankton: effect of shape and infochemicals[J]. Environmental Science & Technology, 2020, 54(19): 12024-12033. |
7 | GEWERT Berit, PLASSMANN Merle M, MACLEOD Matthew. Pathways for degradation of plastic polymers floating in the marine environment[J]. Environmental Science: Processes & Impacts, 2015, 17(9): 1513-1521. |
8 | ZHANG Kai, HAMIDIAN Amir Hossein, Aleksandra TUBIĆ, et al. Understanding plastic degradation and microplastic formation in the environment: a review[J]. Environmental Pollution, 2021, 274: 116554. |
9 | ALIMI Olubukola S, Dominique CLAVEAU-MALLET, KURUSU Rafael S, et al. Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: what are we missing? [J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126955. |
10 | CHAMAS Ali, MOON Hyunjin, ZHENG Jiajia, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3494-3511. |
11 | SONG Young Kyoung, HONG Sang Hee, JANG Mi, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J]. Environmental Science & Technology, 2017, 51(8): 4368-4376. |
12 | John D’ORAZIO, JARRETT Stuart, Alexandra AMARO-ORTIZ, et al. UV radiation and the skin[J]. International Journal of Molecular Sciences, 2013, 14(6): 12222-12248. |
13 | MAO Ruofan, LANG Mengfan, YU Xiaoqin, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, 393: 122515. |
14 | WANG Qiongjie, WANGJIN Xiaoxue, ZHANG Yong, et al. The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii [J]. Science of the Total Environment, 2020, 749: 141603. |
15 | FU Dongdong, ZHANG Qiongjie, FAN Zhengquan, et al. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris [J]. Aquatic Toxicology, 2019, 216: 105319. |
16 | YOU Huimin, HUANG Baoquan, CAO Changlin, et al. Adsorption-desorption behavior of methylene blue onto aged polyethylene microplastics in aqueous environments[J]. Marine Pollution Bulletin, 2021, 167: 112287. |
17 | WU Xiaowei, LIU Peng, WANG Hanyu, et al. Photo aging of polypropylene microplastics in estuary water and coastal seawater: important role of chlorine ion[J]. Water Research, 2021, 202: 117396. |
18 | Verónica FERNÁNDEZ-GONZÁLEZ, ANDRADE Jose Manuel, FERREIRO Borja, et al. Monitorization of polyamide microplastics weathering using attenuated total reflectance and microreflectance infrared spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 263: 120162. |
19 | WU Xiaowei, LIU Peng, HUANG Hexinyue, et al. Adsorption of triclosan onto different aged polypropylene microplastics: critical effect of cations[J]. Science of the Total Environment, 2020, 717: 137033. |
20 | LANG Mengfan, YU Xiaoqin, LIU Jiaheng, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. |
21 | LIU Peng, WU Xiaowei, LIU Haiyong, et al. Desorption of pharmaceuticals from pristine and aged polystyrene microplastics under simulated gastrointestinal conditions[J]. Journal of Hazardous Materials, 2020, 392: 122346. |
22 | LUO Hongwei, XIANG Yahui, LI Yu, et al. Photocatalytic aging process of Nano-TiO2 coated polypropylene microplastics: combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization[J]. Journal of Hazardous Materials, 2021, 404(Pt B): 124159. |
23 | LUO Hongwei, ZENG Yifeng, ZHAO Yaoyao, et al. Effects of advanced oxidation processes on leachates and properties of microplastics[J]. Journal of Hazardous Materials, 2021, 413: 125342. |
24 | ZHOU Liling, WANG Tiecheng, QU Guangzhou, et al. Probing the aging processes and mechanisms of microplastic under simulated multiple actions generated by discharge plasma[J]. Journal of Hazardous Materials, 2020, 398: 122956. |
25 | DING Ling, MAO Ruofan, MA Sirui, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants[J]. Water Research, 2020, 174: 115634. |
26 | HU Lingling, FU Juyang, WANG Shuo, et al. Microplastics generated under simulated fire scenarios: characteristics, antimony leaching, and toxicity[J]. Environmental Pollution, 2021, 269: 115905. |
27 | ZHANG Junqing, GAO Danling, LI Quanhao, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella [J]. Science of the Total Environment, 2020, 704: 135931. |
28 | JOHANSEN Mathew P, CRESSWELL Tom, DAVIS Joel, et al. Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: use of spectroscopy, microscopy and radiotracer methods[J]. Water Research, 2019, 158: 392-400. |
29 | SINGH Nisha, KHANDELWAL Nitin, TIWARI Ekta, et al. Interaction of metal oxide nanoparticles with microplastics: impact of weathering under riverine conditions[J]. Water Research, 2021, 189: 116622. |
30 | GAO Liu, FU Dongdong, ZHAO Jinjin, et al. Microplastics aged in various environmental media exhibited strong sorption to heavy metals in seawater[J]. Marine Pollution Bulletin, 2021, 169: 112480. |
31 | 徐鹏程, 郭健, 马东, 等. 新制和老化微塑料对多溴联苯醚的吸附[J]. 环境科学, 2020, 41(3): 1329-1337. |
XU Pengcheng, GUO Jian, MA Dong, et al. Sorption of polybrominated diphenyl ethers by virgin and aged microplastics[J]. Environmental Science, 2020, 41(3): 1329-1337. | |
32 | LIU Peng, QIAN Li, WANG Hanyu, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. |
33 | ZHU Kecheng, JIA Hanzhong, SUN Yajiao, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: roles of reactive oxygen species[J]. Water Research, 2020, 173: 115564. |
34 | LIU Peng, SHI Yanqi, WU Xiaowei, et al. Review of the artificially-accelerated aging technology and ecological risk of microplastics[J]. Science of the Total Environment, 2021, 768: 144969. |
35 | REN Zhefan, GUI Xiangyang, WEI Yaqiang, et al. Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: key factors, mechanisms, and modeling[J]. Water Research, 2021, 202: 117407. |
36 | LIU Peng, LU Kun, LI Jinli, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 2020, 384: 121193. |
37 | 白濛雨, 赵世烨, 彭谷雨, 等. 城市污水处理过程中微塑料赋存特征[J]. 中国环境科学, 2018, 38(5): 1734-1743. |
BAI Mengyu, ZHAO Shiye, PENG Guyu, et al. Occurrence, characteristics of microplastic during urban sewage treatment process[J]. China Environmental Science, 2018, 38(5): 1734-1743. | |
38 | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
CHEN Xingxing, LIU Min, CHEN Ying. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. | |
39 | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046 | |
40 | LIU Peng, ZHAN Xin, WU Xiaowei, et al. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks[J]. Chemosphere, 2020, 242: 125193. |
41 | SUN Yiran, YUAN Jianhua, ZHOU Tao, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: a systematic review[J]. Environmental Pollution, 2020, 265(Pt B): 114864. |
42 | 黎厚斌. 包装应用化学[M]. 北京: 印刷工业出版社, 2014. |
LI Houbin. Baozhuang yingyong huaxue[M]. Beijing: Graphic Communication Press, 2014. | |
43 | CHEN Zhi, ZHAO Wenqi, XING Ruizhi, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology[J]. Journal of Hazardous Materials, 2020, 384: 121271. |
44 | MIRI Saba, SAINI Rahul, DAVOODI Seyyed Mohammadreza, et al. Biodegradation of microplastics: better late than never[J]. Chemosphere, 2022, 286: 131670. |
45 | MAITY Sukhendu, BANERJEE Sambuddha, BISWAS Chayan, et al. Functional interplay between plastic polymers and microbes: a comprehensive review[J]. Biodegradation, 2021, 32(5): 487-510. |
46 | YUAN Jianhua, MA Jie, SUN Yiran, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, 715: 136968. |
47 | AUTA H S, EMENIKE C U, JAYANTHI B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15-21. |
48 | PARK Seon Yeong, KIM Chang Gyun. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527-533. |
49 | ZURIER Hannah S, GODDARD Julie M. Biodegradation of microplastics in food and agriculture[J]. Current Opinion in Food Science, 2021, 37: 37-44. |
50 | PELLER Julie R, MEZYK Stephen P, SHIDLER Sarah, et al. The reactivity of polyethylene microplastics in water under low oxygen conditions using radiation chemistry[J]. Water, 2021, 13(21): 3120. |
51 | MATTSSON Karin, Frida BJÖRKROTH, KARLSSON Therese, et al. Nanofragmentation of expanded polystyrene under simulated environmental weathering (thermooxidative degradation and hydrodynamic turbulence)[J]. Frontiers in Marine Science, 2021, 7: 578178. |
52 | CESA Flavia Salvador, TURRA Alexander, CHECON Helio Herminio, et al. Laundering and textile parameters influence fibers release in household washings[J]. Environmental Pollution, 2020, 257: 113553. |
53 | KOLE Pieter Jan, LÖHR Ansje J, VAN BELLEGHEM Frank G A J, et al. Wear and tear of tyres: a stealthy source of microplastics in the environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1265. |
54 | TONG Huiyan, ZHONG Xiaocong, DUAN Zhenghang, et al. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: formation, aging factors, and toxicity[J]. Science of the Total Environment, 2022, 833: 155275. |
55 | DUAN Jiajun, BOLAN Nanthi, LI Yang, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments[J]. Water Research, 2021, 196: 117011. |
56 | LUO Hongwei, ZHAO Yaoyao, LI Yu, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Science of the Total Environment, 2020, 714: 136862. |
57 | ZHANG Haibo, WANG Jiaqing, ZHOU Bianying, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243(Pt B): 1550-1557. |
58 | SUN Peipei, LIU Xuemin, ZHANG Minghui, et al. Sorption and leaching behaviors between aged MPs and BPA in water: the role of BPA binding modes within plastic matrix[J]. Water Research, 2021, 195: 116956. |
59 | SU Yinglong, ZHANG Zhongjian, ZHU Jundong, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: the enhanced roles of the long-term aging process[J]. Environmental Pollution, 2021, 270: 116278. |
60 | ANDRADY Anthony L. The plastic in microplastics: a review[J]. Marine Pollution Bulletin, 2017, 119(1): 12-22. |
61 | Axel MÜLLER, BECKER Roland, DORGERLOH Ute, et al. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics[J]. Environmental Pollution, 2018, 240: 639-646. |
62 | WU Xiaowei, LIU Peng, SHI Huanhuan, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater[J]. Water Research, 2021, 188: 116456. |
63 | 王琼杰, 张勇, 陈雨, 等. 水体中微塑料的环境影响行为研究进展[J]. 化工进展, 2020, 39(4): 1500-1510. |
WANG Qiongjie, ZHANG Yong, CHEN Yu, et al. Research progress on environmental influence behavior of microplastics in water[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1500-1510. | |
64 | 周倩, 涂晨, 张晨捷, 等. 滨海湿地环境中微塑料表面性质及形貌变化[J]. 科学通报, 2021, 66(13): 1580-1591. |
ZHOU Qian, TU Chen, ZHANG Chenjie, et al. Surface properties and changes in morphology of microplastics exposed in situ to Chinese coastal wetlands[J]. Chinese Science Bulletin, 2021, 66(13): 1580-1591. | |
65 | YANG Min, CHEN Bing, XIN Xiaying, et al. Interactions between microplastics and oil dispersion in the marine environment[J]. Journal of Hazardous Materials, 2021, 403: 123944. |
66 | LUO Hongwei, XIANG Yahui, LI Yu, et al. Weathering alters surface characteristic of TiO2-pigmented microplastics and particle size distribution of TiO2 released into water[J]. Science of the Total Environment, 2020, 729: 139083. |
67 | LIU Peng, WU Xiaowei, PENG Jianbiao, et al. Critical effect of iron red pigment on photoaging behavior of polypropylene microplastics in artificial seawater[J]. Journal of Hazardous Materials, 2021, 404(Pt B): 124209. |
68 | CHEN Haibo, HUA Xin, YANG Yue, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans [J]. Journal of Hazardous Materials, 2021, 419: 126482. |
69 | Wai Kit HO, LAW Japhet Cheuk Fung, ZHANG Tong, et al. Effects of weathering on the sorption behavior and toxicity of polystyrene microplastics in multi-solute systems[J]. Water Research, 2020, 187: 116419. |
70 | FENG Qi, AN Chunjiang, CHEN Zhi, et al. Investigation into the impact of aged microplastics on oil behavior in shoreline environments[J]. Journal of Hazardous Materials, 2022, 421: 126711. |
[1] | HU Xuan, CHEN Ying. Effects of exposure of polyester fiber microplastics on activated sludge system performance and microbial community structure [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1051-1060. |
[2] | SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458. |
[3] | LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046. |
[4] | FU Jie, QIU Chunsheng, WANG Chenchen, ZHENG Jinxin, LIU Nannan, WANG Dong, WANG Shaopo, SUN Liping. Migration, transformation and risk assessment of heavy metals in municipal sludge treated by thermal hydrolysis [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2216-2225. |
[5] | ZHANG Yashan, CHEN Zongyao, MA Weifang. Research progress on the migration and transformation of microplastics and environmental risks [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6080-6098. |
[6] | LI Songjing, FAN Xiangyang, CUI Erping, HU Chao, CUI Bingjian, LIU Yuan, LI Zhongyang, JING Ruoyao, LI Shengshu. Advances in behavioral characteristics and environmental risks of PPCPs in soil-crop systems [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2827-2838. |
[7] | Xingxing CHEN, Min LIU, Ying CHEN. Microplastics pollution in freshwater environment [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. |
[8] | Qiongjie WANG,Yong ZHANG,Yu CHEN,Jinxiaoxue WANG,Yimei WANG. Research progress on environmental influence behavior of microplastics in water [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1500-1510. |
[9] | Xuexiang FU, Dengfeng ZHANG, Wenping JIANG, Zengmin LUN, Chunpeng ZHAO, Haitao WANG, Yanhong LI. Influence of physicochemical properties of coals on pore morphology and methane adsorption: a perspective [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2714-2725. |
[10] | CUI Aijun, XIN Jian, CAI Yuming, XUE Shihan, ZHU Chenhao, WEI Meijun, CHEN Qun. Study on photo-oxidative resistance of polyglycolic acid modified with organic nano-rutile-TiO2 [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 195-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |