Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 5722-5730.DOI: 10.16085/j.issn.1000-6613.2022-0110
• Chemical processes and equipment • Previous Articles Next Articles
LIN Zixin(), TIAN Wei, AN Weizhong()
Received:
2022-01-17
Revised:
2022-03-31
Online:
2022-11-28
Published:
2022-11-25
Contact:
AN Weizhong
通讯作者:
安维中
作者简介:
林子昕(1982—),女,博士,副教授, 研究方向过程系统工程与强化技术。E-mail:linzixin@ouc.edu.cn。
CLC Number:
LIN Zixin, TIAN Wei, AN Weizhong. Separation of dimethyl carbonate/methanol via heat pump assisted pressure swing distillation process and system simulation optimization[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5722-5730.
林子昕, 田伟, 安维中. 热泵辅助变压精馏分离碳酸二甲酯/甲醇工艺及系统模拟优化[J]. 化工进展, 2022, 41(11): 5722-5730.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0110
公用工程 | 价格/CNY·GJ-1 |
---|---|
电 | 106.66 |
低压蒸汽(0.6MPa,160℃) | 49.10 |
中压蒸汽(1.0MPa,184℃) | 51.88 |
高压蒸汽(4.2MPa,254℃) | 62.36 |
冷却水(25~35℃) | 2.23 |
公用工程 | 价格/CNY·GJ-1 |
---|---|
电 | 106.66 |
低压蒸汽(0.6MPa,160℃) | 49.10 |
中压蒸汽(1.0MPa,184℃) | 51.88 |
高压蒸汽(4.2MPa,254℃) | 62.36 |
冷却水(25~35℃) | 2.23 |
项目 | H-PSD | 方案Ⅰ | 方案Ⅱ | 方案Ⅲ | 方案Ⅳ |
---|---|---|---|---|---|
高压塔再沸器负荷/MW | 9.46 | 8.88 | 7.03 | 5.81 | 5.94 |
中间再沸器负荷/MW | 0 | 0 | 0 | 3.07 | 2.94 |
高压塔压缩机压缩比 | 0 | 3.46 | 3.52 | 1.66 | 3.42 |
高压塔压缩机功率/MW | 0 | 2.02 | 1.99 | 0.22 | 2 |
高压塔低压蒸汽消耗量/t·h-1 | 0 | 0 | 0 | 0 | 0 |
高压塔中压蒸汽消耗量/t·h-1 | 16.92 | 0 | 1.6 | 10.39 | 0 |
高压塔冷却水消耗量/t·h-1 | 0 | 50.03 | 130.09 | 30.04 | 48.65 |
低压塔再沸器功率/MW | 9.09 | 9.03 | 9.03 | 9.03 | 9.03 |
低压塔压缩机压缩比 | 0 | 1.56 | 1.56 | 1.56 | 1.56 |
低压塔压缩机功率/MW | 0 | 0.52 | 0.52 | 0.23 | 0.52 |
低压塔冷却水消耗量/t·h-1 | 339.87 | 105.85 | 105.85 | 523.43 | 105.85 |
总负荷/MW | 9.46 | 7.62 | 8.43 | 7.16 | 7.56 |
总负荷降低/% | 0 | 19.45 | 10.89 | 24.31 | 20.08 |
塔器成本/106 CNY·a-1 | 6.34 | 5.76 | 5.76 | 5.38 | 5.38 |
换热器成本/106 CNY·a-1 | 5.53 | 4.07 | 4.36 | 5.92 | 4.36 |
压缩机成本/106 CNY·a-1 | 0 | 5.38 | 5.34 | 1.32 | 5.34 |
年均投资成本/106 CNY·a-1 | 11.87 | 15.21 | 15.46 | 12.62 | 15.08 |
蒸汽费用/106 CNY·a-1 | 12.72 | 0 | 1.21 | 7.81 | 0 |
冷却水费用/106 CNY·a-1 | 0.60 | 0.10 | 0.16 | 0.37 | 0.10 |
电费/106 CNY·a-1 | 0 | 7.03 | 6.96 | 1.22 | 6.97 |
年均运行成本/106 CNY·a-1 | 13.32 | 7.13 | 8.33 | 9.40 | 7.07 |
年均总成本/106 CNY·a-1 | 25.19 | 22.34 | 23.79 | 22.02 | 22.15 |
年均总成本降低/% | 0.00 | 11.31 | 5.56 | 12.58 | 12.07 |
项目 | H-PSD | 方案Ⅰ | 方案Ⅱ | 方案Ⅲ | 方案Ⅳ |
---|---|---|---|---|---|
高压塔再沸器负荷/MW | 9.46 | 8.88 | 7.03 | 5.81 | 5.94 |
中间再沸器负荷/MW | 0 | 0 | 0 | 3.07 | 2.94 |
高压塔压缩机压缩比 | 0 | 3.46 | 3.52 | 1.66 | 3.42 |
高压塔压缩机功率/MW | 0 | 2.02 | 1.99 | 0.22 | 2 |
高压塔低压蒸汽消耗量/t·h-1 | 0 | 0 | 0 | 0 | 0 |
高压塔中压蒸汽消耗量/t·h-1 | 16.92 | 0 | 1.6 | 10.39 | 0 |
高压塔冷却水消耗量/t·h-1 | 0 | 50.03 | 130.09 | 30.04 | 48.65 |
低压塔再沸器功率/MW | 9.09 | 9.03 | 9.03 | 9.03 | 9.03 |
低压塔压缩机压缩比 | 0 | 1.56 | 1.56 | 1.56 | 1.56 |
低压塔压缩机功率/MW | 0 | 0.52 | 0.52 | 0.23 | 0.52 |
低压塔冷却水消耗量/t·h-1 | 339.87 | 105.85 | 105.85 | 523.43 | 105.85 |
总负荷/MW | 9.46 | 7.62 | 8.43 | 7.16 | 7.56 |
总负荷降低/% | 0 | 19.45 | 10.89 | 24.31 | 20.08 |
塔器成本/106 CNY·a-1 | 6.34 | 5.76 | 5.76 | 5.38 | 5.38 |
换热器成本/106 CNY·a-1 | 5.53 | 4.07 | 4.36 | 5.92 | 4.36 |
压缩机成本/106 CNY·a-1 | 0 | 5.38 | 5.34 | 1.32 | 5.34 |
年均投资成本/106 CNY·a-1 | 11.87 | 15.21 | 15.46 | 12.62 | 15.08 |
蒸汽费用/106 CNY·a-1 | 12.72 | 0 | 1.21 | 7.81 | 0 |
冷却水费用/106 CNY·a-1 | 0.60 | 0.10 | 0.16 | 0.37 | 0.10 |
电费/106 CNY·a-1 | 0 | 7.03 | 6.96 | 1.22 | 6.97 |
年均运行成本/106 CNY·a-1 | 13.32 | 7.13 | 8.33 | 9.40 | 7.07 |
年均总成本/106 CNY·a-1 | 25.19 | 22.34 | 23.79 | 22.02 | 22.15 |
年均总成本降低/% | 0.00 | 11.31 | 5.56 | 12.58 | 12.07 |
4 | 张建海, 秦俏, 任琪, 等. 反应精馏合成碳酸二甲酯过程优化及热集成研究[J]. 现代化工, 2020, 40(7): 226-229. |
ZHANG Jianhai, QIN Qiao, REN Qi, et al. Study on process optimization and thermal integration of dimethyl carbonate synthesis via reactive distillation[J]. Modern Chemical Industry, 2020, 40(7): 226-229. | |
5 | HUANG Zhixian, LI Junlan, WANG Lieyun, et al. Novel procedure for the synthesis of dimethyl carbonate by reactive distillation[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 3321-3328. |
6 | MATSUDA Hiroyuki, TAKAHARA Hideyuki, FUJINO Satoshi, et al. Selection of entrainers for the separation of the binary azeotropic system methanol + dimethyl carbonate by extractive distillation[J]. Fluid Phase Equilibria, 2011, 310(1/2): 166-181. |
7 | 刘立新, 李鲁闽, 刘桂丽, 等. 碳酸二甲酯-甲醇共沸体系分离的模拟与控制[J]. 化工进展, 2017, 36(3): 852-862. |
LIU Lixin, LI Lumin, LIU Guili, et al. Comparison of alternative configurations for separation of dimethyl carbonate-methanol mixture: steady state simulation and dynamic control[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 852-862. | |
8 | CIHAL Petr, VOPICKA Ondřej, DURDAKOVA Tereza-Markéta, et al. Pervaporation and vapour permeation of methanol-dimethyl carbonate mixtures through PIM-1 membranes[J]. Separation and Purification Technology, 2020, 217: 206-214. |
9 | LI Wenqi, Cristhian MOLINA-FERNÁNDEZ, ESTAGER Julien, et al. Supported ionic liquid membranes for the separation of methanol/dimethyl carbonate mixtures by pervaporation[J]. Journal of Membrane Science, 2019, 598: 117790. |
10 | 张青瑞, 彭家瑶, 张凯. 热集成变压分离碳酸二甲酯-甲醇的优化与控制[J]. 化学工程, 2017, 45(1): 60-65. |
ZHANG Qingrui, PENG Jiayao, ZHANG Kai. Design and control of dimethyl carbonate and methanol separation via heat-integrated pressure swing distillation[J]. Chemical Engineering, 2017, 45(1): 60-65. | |
11 | ZHANG Qingrui, PENG Jiayao, ZHANG Kai. Separation of an azeotropic mixture of dimethyl carbonate and methanol via partial heat integration pressure swing distillation[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(1): 50-64. |
12 | ZHANG Qingjun, YANG Shunjin, SHI Pengyuan, et al. Economically and thermodynamically efficient heat pump-assisted side-stream pressure-swing distillation arrangement for separating a maximum-boiling azeotrope[J]. Applied Thermal Engineering, 2020, 173: 115228. |
13 | MA Zhaoyuan, YAO Dong, ZHAO Jiangang, et al. Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis[J]. Process Safety and Environmental Protection, 2021, 148: 462-472. |
14 | ZHU Zhaoyou, QI Huaqing, SHEN Yuanyuan, et al. Energy-saving investigation of organic material recovery from wastewater via thermal coupling extractive distillation combined with heat pump based on thermoeconomic and environmental analysis[J]. Process Safety and Environmental Protection, 2021, 146: 441-450. |
15 | GU Jinglian, YOU Xinqiang, TAO Changyuan, et al. Analysis of heat integration, intermediate reboiler and vapor recompression for the extractive distillation of ternary mixture with two binary azeotropes[J]. Chemical Engineering and Processing, 2019, 142: 107546. |
16 | SAWITRI Dyah Retno, BUDIMAN Arief. Comparative study of heat pump assisted distillation column and its application for pressure swing distillation process[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778(1): 012159. |
17 | FERCHICHI Mariem, HEGELY Laszlo, LANG Peter. Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine[J]. Energy, 2022, 239:122608. |
18 | LI Xin, GENG Xueli, CUI Peizhe, et al. Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology[J]. Applied Thermal Engineering, 2019, 154: 519-529. |
19 | 于鲁汕, 张瑞英, 张程前, 等. 变压精馏分离甲醇与碳酸二甲酯工艺流程的模拟[J]. 化工设计通讯, 2017, 43(5): 121. |
YU Lushan, ZHANG Ruiying, ZHANG Chengqian, et al. Simulation of separation of methanol and dimethyl carbonate by pressure distillation[J]. Chemical Engineering Design Communications, 2017, 43(5): 121. | |
20 | 姚林祥, 刘振锋, 宋怀俊, 等. 变压精馏分离碳酸二甲酯与甲醇工艺流程的模拟[J]. 河南化工, 2013, 30(7): 32-36. |
YAO Linxiang, LIU Zhenfeng, SONG Huaijun, et al. Simulation of pressure swing distillation technology process for dimethyl carbonate and methanol separation[J]. Henan Chemical Industry, 2013, 30(7): 32-36. | |
21 | WEI Hongmei, WANG Feng, ZHANG Junliang, et al. Design and control of dimethyl carbonate-methanol separation via pressure-swing distillation[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11463-11478. |
22 | 李春山, 张香平, 张锁江, 等. 加压-常压精馏分离甲醇-碳酸二甲酯的相平衡和流程模拟[J]. 过程工程学报, 2003, 3(5): 453-458. |
LI Chunshan, ZHANG Xiangping, ZHANG Suojiang, et al. Vapor-liquid equilibria and process simulation for separation of dimethyl carbonate and methanol azeotropic system[J]. The Chinese Journal of Process Engineering, 2003, 3(5): 453-458. | |
23 | 张立庆, 丁江浩, 陈建刚. 碳酸二甲酯-甲醇-正庚烷三元体系的汽液平衡研究[J].天然气化工, 2003, 28(2): 56-59. |
1 | SCHAFFNER Benjamin, SCHAFFNER Friederike, VEREVKIN Sergey P, et al. Organic carbonates as solvents in synthesis and catalysis[J]. Chemical Reviews, 2010, 110(8): 4554-4581. |
2 | ARICO F, TUNDO Pietro. Dimethyl carbonate as a modern green reagent and solvent[J]. Russian Chemical Reviews, 2010, 79(6): 479. |
3 | 王红星, 李海勇, 刘雪艳. 酯交换合成碳酸二乙酯反应精馏工艺的模拟[J]. 计算机与应用化学, 2013, 30(5): 537-541. |
WANG Hongxing, LI Haiyong, LIU Xueyan. Simulation of reactive distillation for diethyl carbonate synthesis by transesterification[J]. Computers and Applied Chemistry, 2013, 30(5): 537-541. | |
23 | ZHANG Liqing, DING Jianghao, CHEN Jiangang. Predication of atmospheric VLE for the ternary system dimethyl carbonate-methanol-n-heptane[J]. Natural Gas Chemical Industry, 2003, 28(2): 56-59. |
24 | MATSUDA Hiroyuki, INABA Koji, NISHIHARA Keiji, et al. Separation effects of renewable solvent ethyl lactate on the vapor-liquid equilibria of the methanol + dimethyl carbonate azeotropic system[J]. Journal of Chemical & Engineering Data, 2017, 62(9): 2944-2952. |
25 | RODRı́GUEZ A, CANOSA J, DOMı́NGUEZ A, et al. Vapour-liquid equilibria of dimethyl carbonate with linear alcohols and estimation of interaction parameters for the UNIFAC and ASOG method[J]. Fluid Phase Equilibria, 2002, 201(1): 187-201. |
26 | FUKANO Makoto, MATSUDA Hiroyuki, KURIHARA Kiyofumi, et al. Ebulliometric determination of vapor liquid equilibria for methanol + ethanol + dimethyl carbonate[J]. Journal of Chemical & Engineering Data, 2006, 51(4): 1458-1463. |
27 | HOLTBRUEGGE Johannes, LEIMBRINK Mathias, LUTZE Philip, et al. Synthesis of dimethyl carbonate and propylene glycol by transesterification of propylene carbonate with methanol: catalyst screening, chemical equilibrium and reaction kinetics[J]. Chemical Engineering Science, 2013, 104: 347-360. |
28 | DHOLE V R, LINNHOFF B. Distillation column targets[J]. Computers & Chemical Engineering, 1993, 17(5/6): 549-560. |
29 | ANNAKOU Omar, MIZSEY Peter. Rigorous investigation of heat pump assisted distillation[J]. Heat Recovery Systems and CHP, 1995, 15(3): 241-247. |
30 | Valentin PLEŞU, RUIZ Alexandra E Bonet, BONET Jordi, et al. Simple equation for suitability of heat pump use in distillation[M]// Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2014, 33: 1327-1332. |
31 | YU Jieping, WANG Sanjang, HUANG Kejin, et al. Improving the performance of extractive dividing-wall columns with intermediate heating[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 2709-2723. |
32 | CHEN Yichun, HUNG Shihkai, LEE Haoyeh, et al. Energy-saving designs for separation of a close-boiling 1,2-propanediol and ethylene glycol mixture[J]. Industrial & Engineering Chemistry Research, 2015, 54(15): 3828-3843. |
33 | FAN Yufeng, YE Qing, CEN Hao, et al. Novel process design combined with reactive distillation and pressure-swing distillation for propylene glycol monomethyl ether acetate synthesis[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 19211-19225. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[8] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[9] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[10] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[11] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[12] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[13] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[14] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[15] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |