Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5406-5415.DOI: 10.16085/j.issn.1000-6613.2021-2628
• Industrial catalysis • Previous Articles Next Articles
WU Shiwei(), WANG Ting, HOU Huandi, SHEN Haiping()
Received:
2021-12-27
Revised:
2022-02-11
Online:
2022-10-21
Published:
2022-10-20
Contact:
SHEN Haiping
通讯作者:
申海平
作者简介:
武世伟(1995—),男,硕士研究生,研究方向为重油加工技术。E-mail:wushiwei.ripp@sinopec.com。
基金资助:
CLC Number:
WU Shiwei, WANG Ting, HOU Huandi, SHEN Haiping. Research progress of dispersed bimetallic catalysts for slurry-phase hydrocracking of residue[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5406-5415.
武世伟, 王廷, 侯焕娣, 申海平. 分散型浆态床渣油加氢双金属催化剂研究进展[J]. 化工进展, 2022, 41(10): 5406-5415.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2628
1 | PRAJAPATI Ravindra, KOHLI Kirtika, MAITY Samir K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: an experimental review[J]. Fuel, 2021, 288: 119686. |
2 | ZHANG Shuyi, LIU Dong, DENG Wenan, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062. |
3 | KANG Ki Hyuk, KIM Gyoo Tae, PARK Sunyoung, et al. A review on the Mo-precursors for catalytic hydroconversion of heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 1-16. |
4 | NGUYEN Manh Tung, NGUYEN Ngoc Thuy, CHO Joungmo, et al. A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2016, 43: 1-12. |
5 | 刘元东, 郜亮, 温朗友, 等. 浆态床重油改质技术新进展[J]. 化工进展, 2010, 29(9): 1589-1596. |
LIU Yuandong, GAO Liang, WEN Langyou, et al. Development of slurry bed technologies for upgrading heavy oils[J]. Chemical Industry and Engineering Progress, 2010, 29(9): 1589-1596. | |
6 | 申海平, 董明, 侯焕娣, 等. 劣质渣油清洁高效加工技术开发[J]. 石油炼制与化工, 2021, 52(10): 136-143. |
SHEN Haiping, DONG Ming, HOU Huandi, et al. Development of clean and efficient processing technology for inferior residue[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 136-143. | |
7 | CHIANELLI Russell R, BERHAULT Gilles, TORRES Brenda. Unsupported transition metal sulfide catalysts: 100 years of science and application[J]. Catalysis Today, 2009, 147(3/4): 275-286. |
8 | 王廷, 侯焕娣, 龙军. 分散型渣油加氢催化剂硫化的研究进展[J]. 现代化工, 2021, 41(3): 68-73. |
WANG Ting, HOU Huandi, LONG Jun. A review on sulfurization of dispersed catalyst for residue hydrotreating[J]. Modern Chemical Industry, 2021, 41(3): 68-73. | |
9 | 王廷, 侯焕娣, 董明, 等. 浆态床油溶性加氢催化剂前体的研究进展[J]. 化工进展, 2020, 39(9): 3669-3676. |
WANG Ting, HOU Huandi, DONG Ming, et al. Research progress on oil-soluble catalysts precursor for slurry-phase hydrocracking of residue[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3669-3676. | |
10 | PANARITI N, Del BIANCO A, Del PIERO G, et al. Petroleum residue upgrading with dispersed catalysts: Part 1. Catalysts activity and selectivity[J]. Applied Catalysis A: General, 2000, 204(2): 203-213. |
11 | 李硕, 刘熠斌, 冯翔, 等. MoS2基催化剂加氢脱硫反应活性相和作用机理研究进展[J]. 化工进展, 2019, 38(2): 867-875. |
LI Shuo, LIU Yibin, FENG Xiang, et al. Research progress in active phase structure and reaction mechanism of MoS2-based catalysts for hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 867-875. | |
12 | KIM Sung Ho, KIM Ki Duk, LEE Yong Kul. Effects of dispersed MoS2 catalysts and reaction conditions on slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2017, 347: 127-137. |
13 | HANSEN Lars P, JOHNSON Erik, BRORSON Michael, et al. Growth mechanism for single- and multi-layer MoS2 nanocrystals[J]. The Journal of Physical Chemistry C, 2014, 118(39): 22768-22773. |
14 | KIM Ki Duk, LEE Yong Kul. Active phase of dispersed MoS2 catalysts for slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2019, 369: 111-121. |
15 | KIM Ki Duk, LEE Yong Kul. Promotional effect of Co on unsupported MoS2 catalysts for slurry phase hydrocracking of vacuum residue: X-ray absorption fine structure studies[J]. Journal of Catalysis, 2019, 380: 278-288. |
16 | JEON Sang Goo, NA Jeong Geol, Chang Hyun KO, et al. Preparation and application of an oil-soluble CoMo bimetallic catalyst for the hydrocracking of oil sands bitumen[J]. Energy & Fuels, 2011, 25(10): 4256-4260. |
17 | WANG Zongxian, ZHANG Hongyu, GUO Aijun, et al. Catalytic hydrocracking of petroleum vacuum residue by using a combination of molybdenum-based oil-soluble and iron-based water-soluble catalysts[J]. ACS Division of Fuel Chemistry, Preprints, 1998, 43: 486-489. |
18 | JEON Sang Goo, NA Jeong Geol, Chang Hyun KO, et al. A new approach for preparation of oil-soluble bimetallic dispersed catalyst from layered ammonium nickel molybdate[J]. Materials Science and Engineering: B, 2011, 176(7): 606-610. |
19 | 祁兴国, 董群, 马守波, 等. 硫化钼催化剂边缘结构的研究进展[J]. 化工进展, 2004, 23(12): 1291-1295. |
QI Xingguo, DONG Qun, MA Shoubo, et al. Edge structures of molybdenum-based sulfide catalyst[J]. Chemical Industry and Engineering Progress, 2004, 23(12): 1291-1295. | |
20 | TANIMU Abdulkadir, ALHOOSHANI Khalid. Advanced hydrodesulfurization catalysts: a review of design and synthesis[J]. Energy & Fuels, 2019, 33(4): 2810-2838. |
21 | TUXEN Anders K, FÜCHTBAUER Henrik G, TEMEL Burcin, et al. Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co-Mo-S hydrotreating catalysts[J]. Journal of Catalysis, 2012, 295: 146-154. |
22 | DING Sijia, JIANG Shujiao, ZHOU Yasong, et al. Catalytic characteristics of active corner sites in CoMoS nanostructure hydrodesulfurization—A mechanism study based on DFT calculations[J]. Journal of Catalysis, 2017, 345: 24-38. |
23 | LAURITSEN Jeppe V, KIBSGAARD Jakob, OLESEN Georg H, et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J]. Journal of Catalysis, 2007, 249(2): 220-233. |
24 | SONG Chunshan, PARFITT Derrick S, SCHOBERT Harold H. Bimetallic dispersed sulfide catalysts from organometallic clusters for coal liquefaction[J]. Catalysis Letters, 1993, 21(1/2): 27-34. |
25 | SONG Chunshan, PARFITT Derrick S, SCHOBERT Harold H. Bimetallic dispersed catalysts from molecular precursors containing Mo-Co-S for coal liquefaction[J]. Energy & Fuels, 1994, 8(2): 313-319. |
26 | PRAJAPATI Ravindra, KOHLI Kirtika, MAITY Samir K, et al. Ultrafine reverse micelle catalysts for slurry-phase residue hydrocracking[J]. Catalysis Today, 2020, 358: 228-236. |
27 | LI Guangci, LI Yanpeng, LIN Guannan, et al. Synthesis of unsupported Co-Mo hydrodesulfurization catalysts with ethanol-water mixed solvent: effects of the ethanol/water ratio on active phase composition, morphology and activity[J]. Applied Catalysis A: General, 2020, 602: 117663. |
28 | JEON Kyung Won, CHO Jae Wan, PARK Ho Ryong, et al. One-pot sol-gel synthesis of a CoMo catalyst for sustainable biofuel production by solvent- and hydrogen-free deoxygenation: effect of the citric acid ratio[J]. Sustainable Energy & Fuels, 2020, 4(6): 2841-2849. |
29 | 王小平, 马怀军, 王冬娥, 等. 水热法制备分散型Co促进的MoS2悬浮床加氢脱硫催化剂[J]. 石油学报(石油加工), 2021, 37(6): 1287-1297. |
WANG Xiaoping, MA Huaijun, WANG Donge, et al. Preparation of the slurry bed hydrodesulfurization catalyst MoS2 promoted by dispersed cobalt by means of hydrothermal synthesis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1287-1297. | |
30 | LANDAU M V, BERGER D, HERSKOWITZ M. Hydrodesulfurization of methyl-substituted dibenzothiophenes: Fundamental study of routes to deep desulfurization[J]. Journal of Catalysis, 1996, 159(1): 236-245. |
31 | EIJSBOUTS Sonja, VAN DEN OETELAAR Leon C A, LOUWEN Jaap N, et al. Changes of MoS2 morphology and the degree of co segregation during the sulfidation and deactivation of commercial Co–Mo/Al2O3 hydroprocessing catalysts[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 3945-3954. |
32 | EIJSBOUTS Sonja, LI Xuanqi, BERGWERFF Jaap, et al. Nickel sulfide crystals in Ni-Mo and Ni-W catalysts: eye-catching inactive feature or an active phase in its own right? [J]. Catalysis Today, 2017, 292: 38-50. |
33 | LIU Dong, LI Meiyu, DENG Wenan, et al. Reactivity and composition of dispersed Ni catalyst for slurry-phase residue hydrocracking[J]. Energy & Fuels, 2010, 24(3): 1958-1962. |
34 | 沈瑞华, 赵会吉, 刘晨光, 等. 用油溶性双金属催化剂加氢裂化处理辽河减压渣油[J]. 石油炼制与化工, 1998, 29(11): 10-12. |
SHEN Ruihua, ZHAO Huiji, LIU Chenguang, et al. Hydrocracking of Liaohe vacuum residue on bimetallic oil soluble catalysts[J]. Petroleum Processing and Petrochemicals, 1998, 29(11): 10-12. | |
35 | WU Mengde, LI Guangci, LI Mingshi, et al. Effect of nickel cobalt co-catalyst on catalytic activity of molybdenumnaphthenatefor the hydroprocessing of coal tar pitch in suspension bed[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 27-36. |
36 | NGUYEN Thanh S, Melaz TAYAKOUT-FAYOLLE, LACROIX Maxime, et al. Promotion effects with dispersed catalysts for residue slurry hydroconversion[J]. Fuel, 2015, 160: 50-56. |
37 | OLIVAS A, ZEPEDA T A, VILLALPANDO I, et al. Performance of unsupported Ni(Co, Fe)/MoS2 catalysts in hydrotreating reactions[J]. Catalysis Communications, 2008, 9(6): 1317-1328. |
38 | VUTOLKINA A V, BAYGILDIN I G, GLOTOV A P, et al. Dispersed Ni-Mo sulfide catalysts from water-soluble precursors for HDS of BT and DBT via in situ produced H2 under water gas shift conditions[J]. Applied Catalysis B: Environmental, 2021, 282: 119616. |
39 | EIJSBOUTS S, VAN DEN OETELAAR L C A, VAN PUIJENBROEK R R. MoS2 morphology and promoter segregation in commercial type 2 Ni-Mo/Al2O3 and Co-Mo/Al2O3 hydroprocessing catalysts[J]. Journal of Catalysis, 2005, 229(2): 352-364. |
40 | GUICHARD Bertrand, Magalie ROY-AUBERGER, DEVERS Elodie, et al. Influence of the promoter's nature (nickel or cobalt) on the active phases ‘Ni(Co)MoS’ modifications during deactivation in HDS of diesel fuel[J]. Catalysis Today, 2010, 149(1/2): 2-10. |
41 | 何杨华, 徐金铭, 王发楠, 等. Ni-Fe基析氧阳极材料的研究进展[J]. 化工进展, 2016, 35(7): 2057-2062. |
HE Yanghua, XU Jinming, WANG Fanan, et al. Recent advances in Ni-Fe-based electrocatalysts for oxygen evolution reaction[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2057-2062. | |
42 | LI Tingzhen, WANG Hulin, YANG Yong, et al. Study on an iron-nickel bimetallic Fischer-Tropsch synthesis catalyst[J]. Fuel Processing Technology, 2014, 118: 117-124. |
43 | PRIYANTO Unggul, SAKANISHI Kinya, MOCHIDA Isao. Optimized solvent amount in the liquefaction of adaro coal with binary sulfide catalyst supported on carbon nanoparticles[J]. Energy & Fuels, 2000, 14(4): 801-805. |
44 | LI Chuan, MENG Huanshuang, YANG Tengfei, et al. Study on catalytic performance of oil-soluble iron-nickel bimetallic catalyst in coal/oil co-processing[J]. Fuel, 2018, 219: 30-36. |
45 | YANG Tengfei, LIU Congcong, LI Chuan, et al. Promotion effect with dispersed Fe-Ni-S catalyst to facilitate hydrogenolysis of lignite and heavy residue[J]. Fuel, 2020, 259: 116303. |
46 | XU Xiwei, LI Zhiyu, TU Ren, et al. Hydrogen from rice husk pyrolysis volatiles via non-noble Ni-Fe catalysts supported on five differently treated rice husk pyrolysis carbon supports[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8325-8339. |
47 | 刘聪聪, 杨腾飞, 邓文安, 等. 煤担载高分散铁镍催化剂在煤/重油加氢共炼中的活性研究[J]. 石油炼制与化工, 2019, 50(6): 57-63. |
LIU Congcong, YANG Tengfei, DENG Wenan, et al. Study of activity of high dispersed fe-ni catalyst supported on coal in co-processing of coal and heavy oil[J]. Petroleum Processing and Petrochemicals, 2019, 50(6): 57-63. | |
48 | LAM-MALDONADO M, MELO-BANDA J A, MACIAS-FERRER D, et al. NiFe nanocatalysts for the hydrocracking heavy crude oil[J]. Catalysis Today, 2020, 349: 17-25. |
49 | YANG Tengfei, LIU Congcong, DENG Wenan, et al. Influence of the iron proportion on the efficiency of an oil-soluble Ni-Fe catalyst applied in the co-liquefaction of lignite and heavy residue[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 19072-19081. |
50 | 崔文龙, 邓文安, 李传, 等. 渣油加氢裂化反应中油溶性催化剂的抑焦性能[J]. 工业催化, 2011, 19(10): 30-35. |
CUI Wenlong, DENG Wenan, LI Chuan, et al. Coke restraining ability of oil-soluble catalyst for residue hydrocracking[J]. Industrial Catalysis, 2011, 19(10): 30-35. | |
51 | VRADMAN L, LANDAU M V, HERSKOWITZ M, et al. High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation[J]. Journal of Catalysis, 2003, 213(2): 163-175. |
52 | PAWELEC B, MARISCAL R, FIERRO J L G, et al. Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions[J]. Applied Catalysis A: General, 2001, 206(2): 295-307. |
53 | Young Gul HUR, KIM Min Sung, LEE Dae Won, et al. Hydrocracking of vacuum residue into lighter fuel oils using nanosheet-structured WS2 catalyst[J]. Fuel, 2014, 137: 237-244. |
54 | JEONG Hyun Rok, LEE Yong Kul. Comparison of unsupported WS2 and MoS2 catalysts for slurry phase hydrocracking of vacuum residue[J]. Applied Catalysis A: General, 2019, 572: 90-96. |
55 | JEONG Hyun Rok, KIM Ki Duk, LEE Yong Kul. Highly active and stable MoWS2 catalysts in slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2020, 390: 117-125. |
56 | SERDYUKOV S I, KNIAZEVA M I, SIZOVA I A, et al. A new precursor for synthesis of nickel-tungsten sulfide aromatic hydrogenation catalyst[J]. Molecular Catalysis, 2021, 502: 111357. |
57 | HWANG Yoon Hyun, LEE Yong Kul. Structure and activity of unsupported NiWS2 catalysts for slurry phase hydrocracking of vacuum residue: XAFS studies[J]. Journal of Catalysis, 2021, 403: 131-140. |
58 | ALPHAZAN Thibault, Audrey BONDUELLE-SKRZYPCZAK, LEGENS Christèle, et al. Improved promoter effect in NiWS catalysts through a molecular approach and an optimized Ni edge decoration[J]. Journal of Catalysis, 2016, 340: 60-65. |
59 | SUN Mingyong, NELSON Alan E, ADJAYE John. A DFT study of WS2, NiWS, and CoWS hydrotreating catalysts: energetics and surface structures[J]. Journal of Catalysis, 2004, 226(1): 41-53. |
60 | ALBERSBERGER Sylvia, HEIN Jennifer, SCHREIBER Moritz W, et al. Simultaneous hydrodenitrogenation and hydrodesulfurization on unsupported Ni-Mo-W sulfides[J]. Catalysis Today, 2017, 297: 344-355. |
61 | YI Yanjiao, ZHANG Bingsen, JIN Xin, et al. Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts[J]. Journal of Molecular Catalysis A: Chemical, 2011, 351: 120-127. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |