Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 176-184.DOI: 10.16085/j.issn.1000-6613.2021-1118
• Industrial catalysis • Previous Articles Next Articles
XUE Yifan(), SONG Yuncai, FENG Jie(), LI Wenying
Received:
2021-05-26
Revised:
2021-07-05
Online:
2021-11-12
Published:
2021-11-12
Contact:
FENG Jie
通讯作者:
冯杰
作者简介:
薛怡凡(1996—),女,博士研究生,研究方向为工业催化。E-mail:基金资助:
CLC Number:
XUE Yifan, SONG Yuncai, FENG Jie, LI Wenying. Research and development on coal-based liquid oil hydrodenitrogenation catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 176-184.
薛怡凡, 宋云彩, 冯杰, 李文英. 煤基液体燃料加氢脱氮催化剂的研究动态[J]. 化工进展, 2021, 40(S2): 176-184.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1118
1 | OHTSUKA Tadao. Catalyst for hydrodesulfurization of petroleum residua[J]. Catalysis Reviews, 1977, 16(1): 291-325. |
2 | KATZER J R, SIVASUBRAMANIAN R. Process and catalyst needs for hydrodenitrogenation[J]. Catalysis Reviews, 1979, 20(2): 155-208. |
3 | 李军芳, 李文博, 史士东, 等. 石油系加氢精制剂用于煤直接液化油的研究[J]. 煤炭转化, 2013, 36(2): 36-39. |
LI Junfang, LI Wenbo, SHI Shidong, et al. Study on petroleum hydrofining catalysts for coal direct liquefaction oil[J]. Coal Conversion, 2013, 36(2): 36-39. | |
4 | 尚慧芸, 徐卫民. “句容坳陷海相原油的地球化学特征”概要[J]. 石油勘探与开发, 1983(6): 68. |
SHANG Huiyun, XU Weimin. Summary of “The geochemical characteristics of marine crude oil in Jurong depression”[J]. Petroleum Expoloration and Development, 1983(6): 68. | |
5 | 黄澎, 张晓静, 毛学锋, 等. 神府煤液化油加氢精制过程中硫氮化合物分布的变化[J]. 燃料化学学报, 2016, 44(1): 37-43. |
HUANG Peng, ZHANG Xiaojing, MAO Xuefeng, et al. Change of sulfur and nitrogen compounds in the direct liquefaction oil from Shenfu coal upon the hydrofining process[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 37-43. | |
6 | 付殿岭. Mo2C和Rh催化剂表面含硫含氮化合物反应机理的研究[D]. 青岛: 中国石油大学(华东), 2016. |
FU Dianling. Study on the reaction mechanism of sulfur- and nitrogen-containing compounds on Mo2C and Rh Catalysts[D]. Qingdao: China University of Petroleum (East China), 2016. | |
7 | WANG Wei, LI Huifeng, HAN Wei, et al. A DFT study of the adsorption behavior of sulfur and nitrogen compounds on the NiMoS phase[J]. China Petroleum Processing and Petrochemical Technology, 2020, 22(1): 40-48. |
8 | 梁文杰. 石油化学[M]. 青岛: 中国石油大学出版社, 2009. |
LIANG Wenjie. Petroleum chemistry[M]. Qingdao: China University of Petroleum Press, 2009. | |
9 | 李伟林, 石智杰, 张晓静, 等. 煤直接液化油中硫氮化合物的类型分布[J]. 洁净煤技术, 2015, 21(4): 55-57. |
LI Weilin, SHI Zhijie, ZHANG Xiaojing, et al. Structures and composition of S and N compounds in direct coal liquefaction oil[J]. Clean Coal Technology, 2015, 21(4): 55-57. | |
10 | 李延红. 煤液化油中含氮化合物存在形式及分布的研究[D]. 上海: 华东理工大学, 2014. |
LI Yanhong. Study on the existence form and distribution of nitrogen compounds in coal liquefaction oil[D]. Shanghai: East China University of Science and Technology, 2014. | |
11 | 刘敏,陈贵锋,王永刚,等. 白石湖煤液化粗油加氢精制过程硫、氮化合物转化规律[J]. 燃料化学学报, 2019, 47(7): 870-875. |
LIU Min, CHEN Guifeng, WANG Yonggang, et al. Conversion of sulphur and nitrogen compounds in hydrofining process of Baishihu coal liquefaction oil[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 870-875. | |
12 | NØRSKOV J K. Electronic factors in catalysis[J]. Progress in Surface Science, 1991, 38(2): 103-144. |
13 | LIU Huan, LIU Chenguang, YIN Changlong, et al. Low temperature catalytic hydrogenation naphthalene to decalin over highly-loaded NiMo, NiW and NiMoW catalysts[J]. Catalysis Today, 2016, 276: 46-54. |
14 | ABSI-HALABI M, STANISLAUS A, AL-DOLAMA K. Performance comparison of alumina-supported Ni-Mo, Ni-W and Ni-Mo-W catalysis in hydrotreating vacuum residue[J]. Fuel, 1998, 77(7): 787-790. |
15 | HAANDEL Lennart van, BREMMER Marien, KOOYMAN Patricia J, et al. Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1-x)S2/Al2O3 catalysts[J]. ACS Catalysis, 2015, 5(12): 7276-7287. |
16 | CUI Wengang, ZHENG Huaan, NIU Menglong, et al. Product compositions from catalytic hydroprocessing of low temperature coal tar distillate over three commercial catalysts[J]. Reaction Kinetics Mechanisms & Catalysis, 2016, 119(2): 491-509. |
17 | Henrik TOPSØE, CLAUSEN Bjerne S, CANDIA Roberto, et al. In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase[J]. Journal of Catalysis, 1981, 68(2): 433-452. |
18 | WIVEL Carsten, CANDIA Roberto, CLAUSEN Bjerne S, et al. On the catalytic significance of a Co-Mo-S phase in Co-Mo/Al2O3 hydrodesulfurization catalysts: combined in situ Mössbauer emission spectroscopy and activity studies[J]. Journal of Catalysis, 1981, 68(2): 453-463. |
19 | TOPSØE Nan Yu, Henrik TOPSØE. Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption[J]. Journal of Catalysis, 1983, 84(2): 386-401. |
20 | Henrik TOPSØE, CLAUSEN Bjerne S. Importance of Co-Mo-S type structures in hydrodesulfurization[J]. Catalysis Reviews, 1984, 26(3/4): 395-420. |
21 | DAAGE M, CHIANELLI R. Structure-function relations in molybdenum sulfide catalysts: the “rim-edge” model[J]. Journal of Catalysis, 1994, 149(2): 414-427. |
22 | 王广建, 赵强, 陈国良, 等. 柠檬酸引入方式对CoMo/TiO2-Al2O3催化剂加氢脱硫性能的影响[J]. 工业催化, 2019, 27(7): 54-60. |
WANG Guangjian, ZHAO Qiang, CHEN Guoliang, et al. Effect of citric acid introduction methods on hydrodesulfurization performance of CoMo/TiO2-Al2O3 catalysts[J]. Industrial Catalysis, 2019, 27(7): 54-60. | |
23 | CHEN Jianjun, MI Jinxing, LI Kezhi, et al. The role of citric acid in preparing highly active CoMo/Al2O3 catalyst: from aqueous impregnation solution to active site formation[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14172-14181. |
24 | BRAGGIO Flávia A, MELLO Matheus D, MAGALHÃES Bruno C, et al. Effect of pH on activity of NiMo/Al2O3 catalysts prepared with citric acid in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. Catalysis Letters, 2017, 147(5): 1104-1113. |
25 | BADOGA Sandeep, DALAI Ajay K, ADJAYE John, et al. Insights into individual and combined effects of phosphorus and EDTA on performance of NiMo/MesoAl2O3 catalyst for hydrotreating of heavy gas oil[J]. Fuel Processing Technology, 2017, 159: 232-246. |
26 | 武瑞明, 张少华, 王晓蔷, 等. Ni-Mo-W非负载型催化剂加氢脱硫性能的改进[J]. 石油化工, 2018, 47(4): 17-23. |
WU Ruiming, ZHANG Shaohua, WANG Xiaoqiang, et al. Improvement of hydrodesulfurization performance of Ni-Mo-W unsupported catalyst[J]. Petrochemical Technology, 2018, 47(04): 17-23. | |
27 | YI Xiaodong, GUO Dongyun, LI Pengyun, et al. One pot synthesis of NiMo-Al2O3 catalysts by solvent-free solid-state method for hydrodesulfurization[J]. RSC Advances, 2017, 7: 54468-54474. |
28 | ZHAO Ruiyu, LU Pingjuan, ZHAO Yuansheng, et al. Effect of phosphorus modification on the acidity, nanostructure of the active phase, and catalytic performance of residue hydrodenitrogenation catalysts[J]. ACS Omega, 2020, 5: 19111-19119. |
29 | KLIMOV O V, NADEINA K A, VATUTINA Yu V, et al. CoMo/Al2O3 hydrotreating catalysts of diesel fuel with improved hydrodenitrogenation activity[J]. Catalysis Today, 2018, 307: 73-83. |
30 | SOLTANALI Saeed, MASHAYEKHI Maryam, MOHADDECY Seyed Reza Seif. Comprehensive investigation of the effect of adding phosphorus and/or boron to NiMo/γ-Al2O3 catalyst in diesel fuel hydrotreating[J]. Process Safety and Environmental Protection, 2020, 137: 273-281. |
31 | HAN Wei, NIE Hong, LONG Xiangyun, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. Journal of Catalysis, 2016, 339: 135-142. |
32 | YAO Songdong, ZHENG Ying, DING Lianhui, et al. Co-promotion of fluorine and boron on NiMo/Al2O3 for hydrotreating light cycle oil[J]. Catalysis Science & Technology Cambridge, 2012, 2: 1925-1932. |
33 | CUI Wengang, LI Wenhong, GAO Rong, et al. Hydroprocessing of low-temperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3-SiO2 catalyst[J]. Energy & Fuels, 2017, 31(4): 3768-3783. |
34 | 张轩, 牛梦龙, 潘柳依, 等. F改性NiW/Al2O3-SiO2催化剂煤焦油加氢性能研究[J]. 石油化工, 2018, 47(9): 936-942. |
ZHANG Xuan, NIU Menglong, PAN Liuyi, et al. Hydroprocessing of coal tar on fluorine modification NiW/Al2O3-SiO2 catalysts[J]. Petrochemical Technology, 2018, 47(9): 936-942. | |
35 | DING Lianhui, ZHANG Zisheng, ZHENG Ying, et al. Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts[J]. Applied Catalysis A: General, 2006, 301: 241-250. |
36 | JOO H S, GUIN James A. Activity of noble metal-promoted hydroprocessing catalysts for pyridine HDN and naphthalene hydrogenation[J]. Fuel Processing Technology, 1996, 49(1): 137-155. |
37 | INFANTES-MOLINA A, ROMERO-PÉREZ A, FINOCCHIO E, et al. HDS and HDN on SBA-supported RuS2 catalysts promoted by Pt and Ir[J]. Journal of Catalysis, 2013, 305: 101-117. |
38 | 李矗, 王安杰, 鲁墨弘, 等. 加氢脱氮反应与加氢脱氮催化剂的研究进展[J]. 化工进展, 2003, 22(6): 583. |
LI Chu, WANG Anjie, LU Mohong, et al. Advance in research on hydrodenitrogenation and its catalysts[J]. Chemical Industry and Engineering Progress, 2003, 22(6): 583. | |
39 | CINIBULK J, Vı́T Z. Selective Mo-Ir/Al2O3 sulfide catalysts for hydrodenitrogenation[J]. Applied Catalysis A: General, 2000, 204(1): 107-116. |
40 | EIJSBOUTS Sonja, SUDHAKAR Christopher, BEER de V H J, et al. Hydrodenitrogenation of decahydroquinoline, cyclohexylamine and O-propylaniline over carbon-supported transition metal sulfide catalysts[J]. Journal of Catalysis, 1991, 127(2): 605-618. |
41 | LEDOUX Marc J, DJELLOULI Brahim. Hydrodenitrogenation activity and selectivity of well-dispersed transition metal sulfides of the second row on activated carbon[J]. Journal of Catalysis, 1989, 115(2): 580-590. |
42 | SANTEN Rutger A van, NEUROCK Matthew, SHETTY Sharan G. Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis[J]. Chemical Reviews, 2010, 110: 2005-2048. |
43 | GUO Yang, HE Hao Ran, LIU Xu, et al. Ring-opening and hydrodenitrogenation of indole under hydrothermal conditions over Ni, Pt, Ru, and Ni-Ru bimetallic catalysts[J]. Chemical Engineering Journal, 2021, 406: 126853. |
44 | LEDESMA Brenda C, ANUNZIATA Oscar A, BELTRAMONE Andrea R. HDN of indole over Ir-modified Ti-SBA-15[J]. Applied Catalysis B: Environmental, 2016, 192(5): 220-233. |
45 | GUTTIERI Mary J, MAIER Wilhelm F. Selective cleavage of carbon-nitrogen bonds with platinum[J]. The Journal of Organic Chemistry, 1984, 49(16): 2875-2880. |
46 | PEETERS Elisabeth, CATTENOT Martine, GEANTET Christophe, et al. Hydrodenitrogenation on Pt/silica-alumina catalysts in the presence of H2S: role of acidity[J]. Catalysis Today, 2008, 133-135: 299-304. |
47 | JI Yongjun, WU Yuen, ZHAO Guofeng, et al. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone[J]. Nano Research, 2015, 8(8): 2706-2713. |
48 | ZDENĔK V T, Daniela GULKOVÁ, Luděk KALUŽA, et al. Pd-Pt catalysts on mesoporous SiO2-Al2O3 with superior activity for HDS of 4,6-dimethyldibenzothiophene: effect of metal loading and support composition[J]. Applied Catalysis B: Environmental, 2015, 179: 44-53. |
49 | 焦金庆. 介孔SiO2负载型催化剂合成及其HDS 催化性能研究[D]. 北京: 中国石油大学, 2018. |
JIAO Jinqing. Synthesis of mesoporous silica-supported catalysts and their HDS catalytic performances[D]. Beijing: China University of Petroleum, 2018. | |
50 | LIU Juan, LI Wenying, FENG Jie, et al. Promotional effect of TiO2 on quinoline hydrodenitrogenation activity over Pt/γ-Al2O3 catalysts[J]. Chemical Engineering Science, 2019, 207: 1085-1095. |
51 | LIU Juan, LI Wenying, FENG Jie, et al. Molecular insights into the hydrodenitrogenation mechanism of pyridine over Pt/γ-Al2O3 catalysts[J]. Molecular Catalysis, 2020, 495: 111148. |
52 | LIU Juan, LI Wenying, FENG Jie, et al. Effects of Fe species on promoting the dibenzothiophene hydrodesulfurization over the Pt/γ-Al2O3 catalysts[J]. Catalysis Today, 2020, 371: 247-257. |
53 | OLIVIERO Laetitia, TRAVERT Arnaud, GARCIA Dominguez Elizabeth, et al. Catalysis by sulfides: advanced IR/CO spectroscopy for the identification of the most active sites in hydrodesulfurization reactions[J]. Journal of Catalysis, 2021. . |
54 | TANABE K, SASAKI H, HATTORI H, et al. Activity tests of various catalysts for hydrocracking of coal by means of high-pressure differential thermal analysis[J]. Fuel Processing Technology, 1979, 2(4): 253-259. |
55 | RALSTON D, GOVEK M, GRAF C, et al. Catalytic activities and selectivities of MoO3-NiSO4 supported on various oxides for hydrocracking of solvent refined lignite: novel low surface area active catalysts[J]. Fuel Processing Technology, 1978, 1(2): 143-150. |
56 | MOCHIDA Isao, OISHI Taiji, KORAI Yozo, et al. Roles of catalyst support in the selective hydrotreatment of a solvent-refined coal[J]. Industrial & Engineering Chemistry Product Research and Development, 1984, 23(2): 203-205. |
57 | BREYSSE M, PORTEFAIX J L, VRINAT M. Support effects on hydrotreating catalysts[J]. Catalysis Today, 1991, 10(4): 489-505. |
58 | TANIMU Abdulkadir, ALHOOSHANI Khalid. Advanced hydrodesulfurization catalysts: a review of design and synthesis[J]. Energy & Fuels, 2019, 33(4): 2810-2838. |
59 | 董昆明. 碳纳米管负载/促进Co-Mo-S基HDS/HDN催化剂研究[D]. 厦门: 厦门大学, 2005. |
DONG Kunming. Co-Mo-S catalysts supported/promoted by CNIs for HDS/HDN[D]. Xiamen: Xiamen University, 2005. | |
60 | GUTI RREZ-ALEJANDRE Aída, Jorge RAMÍREZ, Ioscani Jiménez-del VAL, et al. Activity of NiW catalysts supported on TiO2-Al2O3 mixed oxides: effect of Ti incorporation method on the HDS of 4,6-DMDBT[J]. Catalysis Today, 2005, 107/108: 879-884. |
61 | ZHOU Wenwu, YANG Li, LIU Lang, et al. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2020, 268: 118428. |
62 | ZHANG Pengfei, MU Fujun, ZHOU Yasong, et al. Synthesis of highly ordered TiO2-Al2O3 and catalytic performance of its supported NiMo for HDS of 4, 6-dimethyldibenzothiophene[J]. Catalysis Today, 2020. . |
63 | NGUYEN Thanh Tung, IMAI Kazunari, PU Jianglong, et al. Effect of TiO2 coating on morphology of active phase on sulfided CoMo/Al2O3 hydrotreating catalysts[J]. Energy & Fuels, 2018, 32(2): 1665-1673. |
64 | Jorge RAMÍREZ, RAYO Patricia, Aída GUTIÉRREZ-ALEJANDRE, et al. Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2-Al2O3 binary oxides: effect of the incorporation method of Ti[J]. Catalysis Today, 2005, 109(1/2/3/4): 54-60. |
65 | BORQUE M P, LÓPEZ-AGUDO A, OLGUı́N E, et al. Catalytic activities of Co(Ni)Mo/TiO2-Al2O3 catalysts in gasoil and thiophene HDS and pyridine HDN: effect of the TiO2-Al2O3 composition[J]. Applied Catalysis A: General, 1999, 180(1): 53-61. |
66 | RODSEANGLUNG Thirada, RATANA Tanakorn, PHONGAKSORN Monrudee, et al. Effect of TiO2 Incorporated with Al2O3 on the hydrodeoxygenation and hydrodenitrogenation CoMo sulfide catalysts[J]. Energy Procedia, 2015, 79: 378-384. |
67 | 黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203. |
HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress of homogeneous mesoporous Al2O3 of hydrodenitrogenation catalyst for inferior gas oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 196-203. | |
68 | 田静宇, 马时运, 付希, 等. TiSi复合氧化物性质对NiMo基催化剂加氢脱氧性能的影响[J]. 化学反应工程与工艺, 2017, 33(1): 8-14. |
TIAN Jingyu, MA Shiyun, FU Xi, et al. Effect of the properties of TiSi composite oxide on the hydrodeoxygenation performance of the NiMo based catalyst[J]. Chemical Reaction Engineering and Technology, 2017, 33(1): 8-14. | |
69 | 石冈, 蔡震, 鲍晓军, 等. Ti-Mg-Al复合氧化物催化材料的制备及其加氢脱硫性能[J]. 石油与天然气化工, 2013, 42(2): 112-118. |
SHI Gang, CAI Zhen, BAO Xiaojun, et al. Preparation and hydrodesulfurization performance of Ti-Mg-Al composite oxides[J]. Chemical Engineering of Oil and Gas, 2013, 42(2): 112-118. | |
70 | HIRSCHON A S, LAINE R M. Bulk ruthenium as an HDN catalyst[J]. Energy & Fuels, 1988, 2(3): 292-295. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |