Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 117-125.DOI: 10.16085/j.issn.1000-6613.2021-0406
• Energy processes and technology • Previous Articles Next Articles
HUANG Tianchuan1(), LIU Zhixiang1,2(
)
Received:
2021-03-01
Revised:
2021-03-05
Online:
2021-11-09
Published:
2021-10-25
Contact:
LIU Zhixiang
通讯作者:
刘志祥
作者简介:
黄天川(1996—),男,硕士研究生,研究方向为质子交换膜燃料电池系统水热管理。E-mail:基金资助:
CLC Number:
HUANG Tianchuan, LIU Zhixiang. Low temperature start-up technology of proton exchange membrane fuel cells system[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 117-125.
黄天川, 刘志祥. 质子交换膜燃料电池系统低温启动技术研究进展[J]. 化工进展, 2021, 40(S1): 117-125.
1 | APPLEBY A J. From Sir William Grove to today: fuel cells and the future[J]. Journal of Power Sources, 1990, 29(1/2): 3-11. |
2 | 衣宝廉. 燃料电池和燃料电池车发展历程及技术现状[M]. 北京: 科学出版社, 2018. |
YI Baolian. Development history and technology status of fuel cells and fuel cell vehicles[M]. Beijing: Science Press, 2018. | |
3 | 中国汽车技术研究中心有限公司. 中国汽车安全发展报告(2018)[M]. 北京: 社会科学文献出版社, 2018. |
4 | 张宝斌. 质子交换膜燃料电池冷启动策略研究现状[J]. 节能, 2018, 37(12): 107-111. |
ZHANG Baobin. Research status on cold start strategy of proton exchange membrane fuel cell[J]. Energy Conservation, 2018, 37(12): 107-111. | |
5 | MAO L, WANG C Y. Analysis of cold start in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2007, 154(2): B139. |
6 | WANG Y, MUKHERJEE P P, MISHLER J, et al. Cold start of polymer electrolyte fuel cells: three-stage startup characterization[J]. Electrochimica Acta, 2010, 55(8): 2636-2644. |
7 | 都京, 王宇鹏, 马秋玉, 等. 车用燃料电池发动机冷启动方法综述[J]. 汽车文摘, 2019(1): 37-41. |
DU Jing, WANG Yupeng, MA Qiuyu, et al. A review of solutions and strategies for cold start of PEM fuel cell[J]. Automotive Digest, 2019(1): 37-41. | |
8 | 詹志刚, 吕志勇, 黄永, 等. 质子交换膜燃料电池冷启动及性能衰减研究[J]. 武汉理工大学学报, 2011, 33(1): 151-155. |
ZHAN Zhigang, Zhiyong LYU, HUANG Yong, et al. Research on PEMFC start-up at subzero temperature and performance decay[J]. Journal of Wuhan University of Technology, 2011, 33(1): 151-155. | |
9 | SCHMITTINGER W, VAHIDI A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J]. Journal of Power Sources, 2008, 180(1): 1-14. |
10 | 黄成勇. 质子交换膜燃料电池CCM冰点以下低温特性的研究[D]. 武汉: 武汉理工大学, 2007. |
HUANG Chengyong. Research on subfreezing characteristics of CCM for proton exchange membrane fuel cells[D]. Wuhan: Wuhan University of Technology, 2007. | |
11 | PARK G G, LIM S J, PARK J S, et al. Analysis on the freeze/thaw cycled polymer electrolyte fuel cells[J]. Current Applied Physics, 2010, 10(2): S62-S65. |
12 | OSZCIPOK M, RIEMANN D, KRONENWETT U, et al. Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells[J]. Journal of Power Sources, 2005, 145(2): 407-415. |
13 | CHO E, KO J J, HA H Y, et al. Characteristics of the PEMFC repetitively brought to temperatures below 0℃[J]. Journal of the Electrochemical Society, 2003, 150(12): A1667. |
14 | HWANG G S, KIM H, LUJAN R, et al. Phase-change-related degradation of catalyst layers in proton-exchange-membrane fuel cells[J]. Electrochimica Acta, 2013, 95: 29-37. |
15 | LEE C, MÉRIDA W. Gas diffusion layer durability under steady-state and freezing conditions[J]. Journal of Power Sources, 2007, 164(1): 141-153. |
16 | KIM S G, LEE S J. Tomographic analysis of porosity variation in gas diffusion layer under freeze-thaw cycles[J]. International Journal of Hydrogen Energy, 2012, 37(1): 566-574. |
17 | HIRAKATA S, MOCHIZUKI T, UCHIDA M, et al. Investigation of the effect of pore diameter of gas diffusion layers on cold start behavior and cell performance of polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2013, 108: 304-312. |
18 | GUO Q H, QI Z G. Effect of freeze-thaw cycles on the properties and performance of membrane-electrode assemblies[J]. Journal of Power Sources, 2006, 160(2): 1269-1274. |
19 | ALINK R, GERTEISEN D, OSZCIPOK M. Degradation effects in polymer electrolyte membrane fuel cell stacks by sub-zero operation—An in situ and ex situ analysis[J]. Journal of Power Sources, 2008, 182(1): 175-187. |
20 | LUO Y Q, JIAO K. Cold start of proton exchange membrane fuel cell[J]. Progress in Energy and Combustion Science, 2018, 64: 29-61. |
21 | Honda FCX demonstrates cold-start performance[J]. Fuel Cells Bulletin, 2004, 2004(4): 5. |
22 | KIM S H, KUM Y B, LEE K C, et al. Development of hyundai's Tucson FCEV[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005: 77-83. |
23 | ASO S, KIZAKI M, MIZUNO H. Development progress of the Toyota fuel cell hybrid vehicle[J]. SAE International Journal of Engines, 2008, 1(1): 296-303. |
24 | 许德超, 盛夏, 赵子亮, 等. 车用燃料电池冷启动研究进展与影响因素综述[J]. 汽车文摘, 2019(4): 28-34. |
XU Dechao, SHENG Xia, ZHAO Ziliang, et al. Research progress and influence factors of vehicle fuel cell cold start[J]. Automotive Digest, 2019(4): 28-34. | |
25 | 刘罗祥, 宋珂. 质子交换膜燃料电池冷启动研究综述[J]. 佳木斯大学学报(自然科学版), 2020, 38(1): 131-133. |
LIU Luoxiang, SONG Ke. A review on cold start of proton exchange membrane fuel cell[J]. Journal of Jiamusi University (Natural Science Edition), 2020, 38(1): 131-133. | |
26 | 崔士涛, 王铎霖, 燕希强, 等. 燃料电池低温无辅助启动的研究[J]. 电源技术, 2020, 44(10): 1451-1455. |
CUI Shitao, WANG Duolin, YAN Xiqiang, et al. Study on low temperature unassisted start-up of fuel cell stack[J]. Chinese Journal of Power Sources, 2020, 44(10): 1451-1455. | |
27 | 许澎, 高源, 许思传. 质子交换膜燃料电池停机后吹扫仿真[J]. 同济大学学报(自然科学版), 2017, 45(12): 1873-1878. |
XU Peng, GAO Yuan, XU Sichuan. Numerical simulation on gas purge after shutdown in proton exchange membrane fuel cell[J]. Journal of Tongji University (Natural Science), 2017, 45(12): 1873-1878. | |
28 | 罗马吉, 王芳芳, 刘威, 等. 二次吹扫条件下的PEMFC冷启动实验[J]. 华中科技大学学报(自然科学版), 2011, 39(6): 116-120. |
LUO Maji, WANG Fangfang, LIU Wei, et al. PEMFC cold-start performance after twice purge[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(6): 116-120. | |
29 | LI L J, WANG S X, YUE L K, et al. Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode[J]. Applied Energy, 2019, 254: 113716. |
30 | ZHOU Y B, LUO Y Q, YU S H, et al. Modeling of cold start processes and performance optimization for proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2014, 247: 738-748. |
31 | ZHAN Z G, YUAN C, HU Z R, et al. Experimental study on different preheating methods for the cold-start of PEMFC stacks[J]. Energy, 2018, 162: 1029-1040. |
32 | SUN S C, YU H M, HOU J B, et al. Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature[J]. Journal of Power Sources, 2008, 177(1): 137-141. |
33 | 郑俊生, 邓棚, 马建新. 催化燃烧辅助供热的燃料电池低温启动过程[J]. 同济大学学报(自然科学版), 2013, 41(6): 910-914. |
ZHENG Junsheng, DENG Peng, MA Jianxin. Low-temperature start-up process of fuel cell by a catalytic combustion auxiliary heating[J]. Journal of Tongji University (Natural Science), 2013, 41(6): 910-914. | |
34 | SCHULTZE M, MANTZARAS J. Hetero-/homogeneous combustion of hydrogen/air mixtures over platinum: Fuel-lean versus fuel-rich combustion modes[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10654-10670. |
35 | LIN R, WENG Y M, LIN X W, et al. Rapid cold start of proton exchange membrane fuel cells by the printed circuit board technology[J]. International Journal of Hydrogen Energy, 2014, 39(32): 18369-18378. |
36 | JIANG F M, WANG C Y, CHEN K S. Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment[J]. Journal of the Electrochemical Society, 2010, 157(3): B342. |
37 | JIAO K, LI X G. Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(19): 8171-8184. |
38 | SILVA R E, HAREL F, JEMEÏ S, et al. Proton exchange membrane fuel cell operation and degradation in short-circuit[J]. Fuel Cells, 2014, 14(6): 894-905. |
39 | GUO Q, LUO Y Q, JIAO K. Modeling of assisted cold start processes with anode catalytic hydrogen-oxygen reaction in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(2): 1004-1015. |
40 | 郭海鹏, 孙树成, 俞红梅, 等. 催化反应方法辅助PEMFC低温启动的研究[J]. 电源技术, 2019, 43(6): 964-967. |
GUO Haipeng, SUN Shucheng, YU Hongmei, et al. Study on start-up of PEMFC by catalytic reaction at subzero temperature[J]. Chinese Journal of Power Sources, 2019, 43(6): 964-967. |
[1] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[2] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[3] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[6] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[7] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[8] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[9] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[13] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[14] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[15] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1066
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |